
THE DIFFERENTIAL IDEAL   [uv]

KATHLEEN B. O'KEEFE AND EDWARD S. O'KEEFE

1. Introduction. Let R{u, vi\ be the polynomial ring R\u, U\,

u2, ■ ■ ■ : vi, vi+i • • • ] over R, a field of characteristic zero, with the

derivation D (y,) =y,+i for y = u or i/.

Let fi= [uvi] be the differential ideal generated by the form

X = uvt. fi has the same elements as the ideal (uvi, (uvi)u (uv{)2, ■ ■ ■ ),

where the subscripts again denote derivatives.

A power product in R{u, vi} P = #,-(i)#t(2) ■ • • tt*(m)»/(i)»j(2) ■ ■ • »/<»)

is of weight, w(P) = ^™=1 i(K)-\- ^"-1 j(P). and signature, sig (P) =

(m,n).

The following fundamental theorem is proved in [3].

Levi's Theorem. If P is a power product in R{u, v] and w(P)

<m-n, then P is in the ideal [uv].

The purpose of this paper is to show that if P contains no proper

factor which is in [uv], and if w(P) ^mn, then P is not in [uv].

2. Derivations and isomorphic images of R{u, v}. Computations

in R[u, v} are simplified by working in an isomorphic image of

R{u, v}, R\u, v\. R{u, v} is the ring R[il, Hi ■ ■ ■ , v, vi ■ ■ • ] with

derivation D(yi) =y,+i for y = u or v. The isomorphism is established

by the mapping ft: h(ut) =«,•/*'!, h(v/) =Vj/j\. Thus D(m,) corresponds

to D(ui)/(i-\-l) and D(vf) to D(v,)/j-\-\. For typographical con-

venience, the bars will be omitted; hence Dn(uv) is written

(uv)n= ]T?-n «>»n-y.

Definition 2.1. D[ = Dl is defined on R[u, u\, • ■ • , vt, vi+n ■ ■ ■ ]

by

1. Dl(ui) = (i + l)ui+i       for i ^ 0.

((j-l+l)vi+1        iorj^l,
2. Dl(v,)= VJ '+ J

\ 0 ioijKl.

3. If d[ has been defined,    then Z>£+i = Dl(Dk).

Theorem 2.2. Let ft be the (nondifferential) isomorphism of (R

= 7?[u, Ui, ■ • ■ , v, vi, • • • ] onto (Ri = R[u, «i, • • • , vt, Vi+\, ■ ■ • ]

determined by mapping Ui into m,- and v, into v,+i. Then

(2.1) h(D°(P)) = Dl(h(P)).
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Proof. It suffices to show (2.1) for P = u{ and P =Vj. Suppose that

t^O, then for 1^0, h(D°(ui)) =h((i + l)ui+1) = (i + l)ui+1 = Dl(h(ui));

and for j^l, h(D\v>>) = h((j+l)vj+1) = (j+l)v,+w = Dl(vJ+l)

= D\h(v,)).

Corollary 2.3. Sii is closed under the operation Dl. Furthermore,

the ideal [uvi], the image of [uv] under the mapping h, is closed under D'.

Corollary 2.4. Let R{u, vt} be the Ritt algebra (fftz, Dl), then

R{u, vi} is isomorphic to R{u, v}.

Let (uv) be the (algebraic) subring of R{u, v} generated by uv;

that is, (uv) is the set of elements of 7? {u, v} divisible by uv.

Theorem 2.5. There is a module isomorphism g which maps

uR{u, v}/(uv) onto R\u, v\}.

Proof. Let I=(uv). If a(=uR{u, v}/(uv), then for a unique b not

involving v, a = ub-\-I. Define g by g(a)=b. Then g(7)=0, g(c+7)

= c/u, if c does not contain v. Clearly if r£7?, g(ra) =rg(a) and if ai

and a2 are elements of uR[u, v}/(uv), then g(ai+a2) ==g(ai)-\-g(a2).

Furthermore, for every c in R{u, vi}, g-1(c) = uc+I and g~l(c) is an

element of uR\u, v}/(uv).

Theorem 2.6. Under g, u[uv]/(uv) in R{u, v} is mapped iso-

morphically on [uvi] in R{u, v\}.

Proof. If a(E.u[uv]/(uv), then a = uc+I, where c=Eo" d(i)(uv)t

with d(i)E:R{u, v}. For i>0, (uv){= (wi>i),-_i+ttiD; hence, uc + I

= mET* d(i)(uvi)i-i + I. Thus g(a)=c and c£[mz/i]. Further, g~lg(a)

= o. If any c is in [uvi], then g_1(c)=Mc + 7, or wEo d(i)(uvi)i-\-I.

But then certain elements of 7 may be used to fill out the sums

because ud(i)uiV^I for every i. Therefore mEo d(i)(uvx)i-\-I

= ME™+1 d(i — l)(uv)i+I, and g covers all of [uvi] and is an iso-

morphism.

Corollary 2.7. If Q = 0[uvx], then u-Q = 0 [uv].

Proof. Using the g_1 of Theorem 2.2, [uvi] is mapped onto

u[uv]/(uv). Hence uQ=0[uv] because uQE:uQ + I = g~1(Q).

3. The operator Tn. Let P = u3-UV be a power product of signature

(k, I) and excess weight zero.

Definition 3.1. Tn operates on V and is defined by

1. For» = l, ri(F)=7?1(F)-7)0(F).

2. If r„_i(F) has been defined, then

rn(F)=7)i(rn_1(F))-rn_1(73»(F)).  (Note that Tn and Dl do not

commute.)
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Theorem 3.2. Let F=»,-(i)»/<« ■ ■ • vjW, then for n^l, Tn(V)

= ( —l)"w! X D/(i) • • • f((i)+i • • • vt(n)+i ■ • ■ Vjd), with the summa-

tion extending over all products in which exactly n v-subscripts are

raised by 1. (That is, no /(l), * = 1, ■ ■ ■ , /, is raised more than 1.) 7/

«>/, P„(F) = 0.

Proof. The proof is by induction on n, keeping / fixed.

For n = 1,

7/(F) = D\V) - D\V)
i

= X O'MK-(i) • • ■ vi{m)+l ■ ■ ■ viW
m=X

I

—   X (j(m) + Otyd)   •   •   • ̂ <m)+l  •   '   • vid)
m=l

I

=   —   X Vjtl)   ■   ■   ■  »/(m)+l   '   •   • 5/(1).
m=l

For w>l, assume that the theorem holds for values less than n.

Let Zn be the set of all functions z on {1,2, • • • , /} to {0, 1} with

n occurrences of 1. The induction hypothesis may now be written,

for p<n,

TP(V) = (-l)ppl  Y, vm+zm ■ ■ ■ vm+zm.
z£ZP

By definition Tn(V) =D1(Tn-i(V))-Tn-x(D°(V)), and the induction

hypothesis may be applied to 7"„_i. Using the definition of D° and

D1, an expression for Tn may be derived as follows.

Tn(V) = &((-\y-l(n - 1)!      £     viw+zm ■ ■ ■ »,(„+,(„)
\ z€Z(ti-1) /

- 7Vi( X 0'(0 + !)»/(« • • • »i(»+i • • • tycoj

= (-\y-\n- 1)!

•     X     (   X 0(0 + 8(0)»/(D+»(l) - - • «V(0+»(0+l • • • "JCl)+*(D )
zeZ(n-l) \   (=1 /

-X(iW + i)(-i)n-1(«-i)!
(=1

•(      X    py(i)+»(i) • • ' vnt)+i+z(t) • • ■ Vjii) +S(i)l-
\   zeZ(n-l) /
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These two sums are exactly comparable, the same t's and z's occur-

ring in each. The sign of one term is + and the other — ; the sum of

the coefficients being

j(t) + z(t) - (j(t) + 1).

The sum coefficient is then — 1 for exactly those terms where z(t) =0.

It is 0 for the others. For n^l, then, the terms unify, giving for each

a new z, an element of Zn; and for n>l, the terms cancel. In case

n^l, each element of Zn can be found in n ways from as many ele-

ments of Zn_i; hence, the new factor in the coefficient is —n. This

concludes the proof.

The T-operator will now be applied to an arbitrary power product

P of excess weight zero. First of all, if P contains any factor of nega-

tive excess weight, then P is in [uv]. Therefore, in particular, assume

that P does not contain uv.

Theorem 3.3. Let P = u1UV, then P = uUTx(V) [uv].

Proof. Since P is a power product of excess weight zero, uUV has

negative excess weight and is zero modulo [uv] by Levi's Theorem.

Mapping (R into itself by D°, uUV = 0[uv] becomes

(3.1) UiUV + uD°(U)V + uUD°(V) = 0 [uv].

Consider Q= UV as a power product in (Ri. Then 5= Uhr1(V) in (R

has signature (k — 1, I) and weight w = kl — 1 — K(k —1)1; hence

S = 0[uv]. Under D°, S=0[uv] becomes

(3.2) D<>(U)(hrl(V)) + UDa(hr\V)) = 0 [uv].

Mapping (R into (Ri, (3.2) becomes

(3.3) D°(U)V + UDl(V) = 0 [uvi].

The derivation of 7? {u, Vi}, D', may be used in [uv] because using the

mapping g of Theorem 3.5, g~1Dlg maps uR[u, v}/(uv) into itself

and u[uv]l(uv) into itself. Hence, by Corollary 2.7,

(3.4) uD°(U)V + uTJD\V) = 0 [uv].

Substituting (3.4) in (3.1) completes the proof.

Lemma 3.4. Let P = UjUV and let h map (R onto ffti.

IfQ= Uh-^Tj-^V)), then Q=0[uv].

Proof. By Theorem 3.2, w(T3_1(V*))=w(V)+(j-l) for each

term T,--i(V*) in T^(V). For each term Q* in Q, w(Q*)=w(P)-j
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+ (j-l)-l = kl-l-K(k-l)l; and the signature of Q* is (ft-1, /).

Hence ()* — 0[uv] by Levi's Theorem.

Theorem 3.5. Let P = UjUV, then for all j>0,

1 r     i
(3.5) P = —uUTj(V) [uv].

/!

Proof. The proof is by induction on/, and the case/ = 1 is covered

by Theorem 3.3. Assume that (3.5) holds for values less than/. In (R,

Uj-iUVz=0[uv] by Levi's Theorem. Under D°, we have

(3.6) JUjUV m (-uj-iD°(U)V - uj-xUD^V)) [uv].

Applying the induction hypothesis to each term on the right (3.6)

becomes

ju/UV m (---— uD^WTj-tV)
\     (7—1)!

(3.7)

-T--7rvUT^x(D<>(V))) [uv].
0 - i)! /

Map (R onto (Ri by ft and consider Q = ?7P/_1( V) as a power product

in (Ri. Then 5= r/ft-1(P/_1(F)) is in [uv] by Lemma 3.4. Under D°,

S=0 [uv] becomes

(3.8) D°(U)h-l(Ti-x(V)) + UD°(h-KT,-x(V))) = 0 [uv].

Mapping (R onto (Ri, (3.8) becomes

(3.9) 7?°(^)7/-i(F) + C/7)1(r/_1(F)) - 0 [»J.

By Corollary 2.7, we get

(3.10) uD<>(U)T^x(V) + M^ZJKry-iCT)) = 0 [«»].

Substituting (3.10) in (3.7) completes the proof.

4. The converse of H. Levi's Theorem for [uv]. Let P = uimui&)

• • • «<(*)P/(i)!'/(2) ■ • ■ 0/(i) be of signature (ft, /) and weight w. Assume

that P has no factor of negative excess weight. By Theorem III of

[4], without loss of generality, we may set w(P) =ft/. If a sequence of

ft transformations exist such that

(1)   F = n/(i) • ■ • !>/(!) is changed to v't,

.... (2) in the Zth transformation exactly i(t) ^-subscripts are in-
(4.1) , ,creased by one,

(3)   J/ = w,(i) • • • «,•(*) is changed to w*;



i966] THE DIFFERENTIAL IDEAL [tn] 755

then P may be written congruent to a linear combination of a-terms

of the same weight and signature as P, [3]. P is of excess weight zero

and thus P = cukvi[uv]. The only question concerns the coefficient c,

which is not zero, but is ( — l)»i+»'»+-- -+«>w where m is the number of

sequences which transform F to v't. Thus c = 0 if and only if m = 0,

and we have proved

Theorem 4.1. If P=UV has a nonnegative weight matrix, then P

is not in [uv] if and only if V can be transformed to vlt by a sequence

of n steps, in the tth of which exactly i(t) v-subscripts are increased

by one.

It remains to characterize those U and V for which (4.1) exists.

At the tth step, suppose a power product M is transformed into a

power product N as follows: ut in M is replaced with u and the lowest

t ii-subscripts (assuming that j(l)g,j(2)^ ' ' ' =j'W = ■ ■ ' =j(0)

are increased by one. Now, if N contains a factor with negative

excess weight, then the same is true of M. More generally, we prove

Theorem 4.2. Let M be a power product of signature (k, I) contain-

ing ut, t>0 and t v's, vm, • • • v]lt), and let

N = M ■-•
UtVjm  ■  •  • »/(«)

Then if G is any factor on N with excess weight e(G), there is a factor F

of M with excess weight e(F) ^e(G).

Proof. We may assume G has u as a factor; otherwise, by reducing

the subscripts in G that have been raised we get a factor G* of M

with e(G*)^e(G). Therefore G is of the form uU\V, where Ui is a

factor of U; notationally, let Ui = U. If V involves no unchanged

subscripts, then lowering the n subscripts of V that have been raised

we get V* and a factor UV* of M with e(UV*)=w(U)+w(V)-n

— (k — l)n = e(uUV). If V involves all the changed subscripts, then

similarly e(utUV*) =t+w(U) + (W(V)-t)-k deg V* = e(uUV). If

V involves an unchanged subscript but not all changed ones, we can

exchange an unchanged subscript for a changed one except in the

case that all the changed subscripts of N are j(t) +1 and all the un-

changed subscripts of G are j(i). Thus a reduction is achieved except

in the case that G is of the form uUvjW+iVvjrt), p<t,q>0. Consider the

cases (1) k^j(t) + l and (2) k^j(t).

In case 1,

e(uUv"it)+iVm) g e(uUvf(t)+iv?<t)).
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In case 2,

e(uUvj{n+iVj(t)) ^ e(uUvHt)+1vi(f)).

In either case, a factor F of M has been found such that e(F) ^e(G),

and the proof is complete.

Corollary 4.3. If P=UV has a nonnegative weight matrix and

excess weight zero, then Pf^0[uv].

Proof. By symmetry we may assume that V^0(v). By Theorem

4.2, there is a sequence of transformations satisfying (4.1) which

transforms P into the a-term ukv\.

Corollary 4.4. If P = uflj, the smallest exponent q such that Pq

= 0[uv] is g = i+/ + l.

Proof. Q = (uivj)i+i+'L has negative excess weight; hence, by Levi's

Theorem is in [uv]. On the other hand, S = (iiivf)i+i has a nonnegative

weight matrix, excess weight zero, and is not in [uv] by Corollary 4.3.

This solves Ritt's exponent problem for [uv], ([l], p. 177).
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