THE DIFFERENTIAL IDEAL [uv]

KATHLEEN B. O'KEEFE AND EDWARD S. O'KEEFE

1. Introduction. Let $R\{u, v_l\}$ be the polynomial ring $R[u, u_1, u_2, \dots : v_l, v_{l+1} \dots]$ over R, a field of characteristic zero, with the derivation $D(y_i) = y_{i+1}$ for y = u or v.

Let $\Omega = [uv_l]$ be the differential ideal generated by the form $X = uv_l$. Ω has the same elements as the ideal $(uv_l, (uv_l)_1, (uv_l)_2, \cdots)$, where the subscripts again denote derivatives.

A power product in $R\{u, v_l\}$ $P = u_{i(1)}u_{i(2)} \cdots u_{i(m)}v_{j(1)}v_{j(2)} \cdots v_{j(n)}$ is of weight, $w(P) = \sum_{k=1}^{m} i(K) + \sum_{p=1}^{n} j(P)$, and signature, sig $(P) = \langle m, n \rangle$.

The following fundamental theorem is proved in [3].

LEVI'S THEOREM. If P is a power product in $R\{u, v\}$ and $w(P) < m \cdot n$, then P is in the ideal [uv].

The purpose of this paper is to show that if P contains no proper factor which is in [uv], and if $w(P) \ge mn$, then P is not in [uv].

2. Derivations and isomorphic images of $R\{u, v\}$. Computations in $R\{u, v\}$ are simplified by working in an isomorphic image of $R\{u, v\}$, $R\{\bar{u}, \bar{v}\}$. $R\{\bar{u}, \bar{v}\}$ is the ring $R[\bar{u}, \bar{u}_1 \cdots, \bar{v}, \bar{v}_1 \cdots]$ with derivation $\overline{D}(\bar{y}_i) = \bar{y}_{i+1}$ for y = u or v. The isomorphism is established by the mapping $h: h(\bar{u}_i) = u_i/i!$, $h(\bar{v}_j) = v_j/j!$. Thus $\overline{D}(\bar{u}_i)$ corresponds to $D(u_i)/(i+1)$ and $\overline{D}(\bar{v}_j)$ to $D(v_j)/j+1$. For typographical convenience, the bars will be omitted; hence $\overline{D}^n(\bar{u}\bar{v})$ is written $(uv)_n = \sum_{j=0}^n u_j v_{n-j}$.

DEFINITION 2.1. $\overline{D}_1^l = D^l$ is defined on $R[u, u_1, \dots, v_l, v_{l+n} \dots]$ by

1.
$$D^{l}(u_{i}) = (i+1)u_{i+1}$$
 for $i \ge 0$.

2.
$$D^{l}(v_{j}) = \begin{cases} (j-l+1)v_{j+1} & \text{for } j \geq l, \\ 0 & \text{for } j < l. \end{cases}$$

3. If D_k^l has been defined, then $D_{k+1}^l = D^l(D_k)$.

THEOREM 2.2. Let h be the (nondifferential) isomorphism of $\Re = R[u, u_1, \dots, v, v_1, \dots]$ onto $\Re_l = R[u, u_1, \dots, v_l, v_{l+1}, \dots]$ determined by mapping u_i into u_i and v_j into v_{j+l} . Then

(2.1)
$$h(D^{0}(P)) = D^{l}(h(P)).$$

Presented to the Society, April 13, 1965; received by the editors March 5, 1965 and, in revised form, July 28, 1965 and November 15, 1965.

PROOF. It suffices to show (2.1) for $P = u_i$ and $P = v_j$. Suppose that $i \ge 0$, then for $l \ge 0$, $h(D^0(u_i)) = h((i+1)u_{i+1}) = (i+1)u_{i+1} = D^l(h(u_i))$; and for $j \ge l$, $h(D^0(v_j)) = h((j+1)v_{j+1}) = (j+1)v_{j+l+1} = D^l(v_{j+l}) = D^l(h(v_j))$.

COROLLARY 2.3. \Re_l is closed under the operation D^l . Furthermore, the ideal $[uv_l]$, the image of [uv] under the mapping h, is closed under D^l .

COROLLARY 2.4. Let $R\{u, v_l\}$ be the Ritt algebra $\langle \mathfrak{R}_l, D^l \rangle$, then $R\{u, v_l\}$ is isomorphic to $R\{u, v\}$.

Let (uv) be the (algebraic) subring of $R\{u, v\}$ generated by uv; that is, (uv) is the set of elements of $R\{u, v\}$ divisible by uv.

THEOREM 2.5. There is a module isomorphism g which maps $uR\{u, v\}/(uv)$ onto $R\{u, v_1\}$.

PROOF. Let I = (uv). If $a \in uR\{u, v\}/(uv)$, then for a unique b not involving v, a = ub + I. Define g by g(a) = b. Then g(I) = 0, g(c + I) = c/u, if c does not contain v. Clearly if $r \in R$, g(ra) = rg(a) and if a_1 and a_2 are elements of $uR\{u, v\}/(uv)$, then $g(a_1 + a_2) = g(a_1) + g(a_2)$. Furthermore, for every c in $R\{u, v\}$, $g^{-1}(c) = uc + I$ and $g^{-1}(c)$ is an element of $uR\{u, v\}/(uv)$.

THEOREM 2.6. Under g, u[uv]/(uv) in $R\{u, v\}$ is mapped isomorphically on $[uv_1]$ in $R\{u, v_1\}$.

PROOF. If $a \in u[uv]/(uv)$, then a = uc + I, where $c = \sum_0^m d(i)(uv)_i$ with $d(i) \in R\{u, v\}$. For i > 0, $(uv)_i = (uv_1)_{i-1} + u_iv$; hence, $uc + I = u\sum_1^m d(i)(uv_1)_{i-1} + I$. Thus g(a) = c and $c \in [uv_1]$. Further, $g^{-1}g(a) = a$. If any c is in $[uv_1]$, then $g^{-1}(c) = uc + I$, or $u\sum_0^m d(i)(uv_1)_i + I$. But then certain elements of I may be used to fill out the sums because $ud(i)u_iv \in I$ for every i. Therefore $u\sum_0^m d(i)(uv_1)_i + I = u\sum_1^{m+1} d(i-1)(uv)_i + I$, and g covers all of $[uv_1]$ and is an isomorphism.

COROLLARY 2.7. If $Q \equiv 0 [uv_1]$, then $u \cdot Q \equiv 0 [uv]$.

PROOF. Using the g^{-1} of Theorem 2.2, $[uv_1]$ is mapped onto u[uv]/(uv). Hence $uQ \equiv 0[uv]$ because $uQ \in uQ + I = g^{-1}(Q)$.

3. The operator T_n . Let $P = u_j U V$ be a power product of signature $\langle k, l \rangle$ and excess weight zero.

DEFINITION 3.1. T_n operates on V and is defined by

- 1. For n=1, $T_1(V) = D^1(V) D^0(V)$.
- 2. If $T_{n-1}(V)$ has been defined, then

 $T_n(V) = D^1(T_{n-1}(V)) - T_{n-1}(D^0(V))$. (Note that T_n and D^1 do not commute.)

THEOREM 3.2. Let $V = v_{j(1)}v_{j(2)} \cdots v_{j(l)}$, then for $n \leq l$, $T_n(V) = (-1)^n n! \sum v_{j(1)} \cdots v_{l(1)+1} \cdots v_{l(n)+1} \cdots v_{j(l)}$, with the summation extending over all products in which exactly n v-subscripts are raised by 1. (That is, no $j_{(i)}$, $i = 1, \cdots, l$, is raised more than 1.) If n > l, $T_n(V) = 0$.

PROOF. The proof is by induction on n, keeping l fixed. For n=1,

$$T_{1}(V) = D^{1}(V) - D^{0}(V)$$

$$= \sum_{m=1}^{l} (j(m))v_{j(1)} \cdot \cdot \cdot v_{j(m)+1} \cdot \cdot \cdot v_{j(l)}$$

$$- \sum_{m=1}^{l} (j(m) + 1)v_{j(1)} \cdot \cdot \cdot v_{j(m)+1} \cdot \cdot \cdot v_{j(l)}$$

$$= - \sum_{m=1}^{l} v_{j(1)} \cdot \cdot \cdot v_{j(m)+1} \cdot \cdot \cdot v_{j(l)}.$$

For n>1, assume that the theorem holds for values less than n. Let Z_n be the set of all functions z on $\{1, 2, \dots, l\}$ to $\{0, 1\}$ with n occurrences of 1. The induction hypothesis may now be written, for p < n,

$$T_p(V) = (-1)^p p! \sum_{z \in \mathbb{Z}_p} v_{j(1)+z(1)} \cdot \cdot \cdot v_{j(l)+z(l)}.$$

By definition $T_n(V) = D^1(T_{n-1}(V)) - T_{n-1}(D^0(V))$, and the induction hypothesis may be applied to T_{n-1} . Using the definition of D^0 and D^1 , an expression for T_n may be derived as follows.

$$T_{n}(V) = D^{1}\left((-1)^{n-1}(n-1)! \sum_{z \in Z(n-1)} v_{j(1)+z(1)} \cdots v_{j(l)+z(l)}\right)$$

$$- T_{n-1}\left(\sum_{t=1}^{l} (j(t)+1)v_{j(1)} \cdots v_{j(t)+1} \cdots v_{j(l)}\right)$$

$$= (-1)^{n-1}(n-1)!$$

$$\cdot \sum_{z \in Z(n-1)} \left(\sum_{t=1}^{l} (j(t)+z(t))v_{j(1)+z(1)} \cdots v_{j(t)+z(t)+1} \cdots v_{j(l)+z(l)}\right)$$

$$- \sum_{t=1}^{l} (j(t)+1)(-1)^{n-1}(n-1)!$$

$$\cdot \left(\sum_{z \in Z(n-1)} v_{j(1)+z(1)} \cdots v_{j(t)+1+z(t)} \cdots v_{j(l)+z(l)}\right).$$

These two sums are exactly comparable, the same t's and z's occurring in each. The sign of one term is + and the other -; the sum of the coefficients being

$$j(t) + z(t) - (j(t) + 1).$$

The sum coefficient is then -1 for exactly those terms where z(t) = 0. It is 0 for the others. For $n \le l$, then, the terms unify, giving for each a new z, an element of Z_n ; and for n > l, the terms cancel. In case $n \le l$, each element of Z_n can be found in n ways from as many elements of Z_{n-1} ; hence, the new factor in the coefficient is -n. This concludes the proof.

The T-operator will now be applied to an arbitrary power product P of excess weight zero. First of all, if P contains any factor of negative excess weight, then P is in [uv]. Therefore, in particular, assume that P does not contain uv.

THEOREM 3.3. Let
$$P = u_1 U V$$
, then $P \equiv u U T_1(V) [uv]$.

PROOF. Since P is a power product of excess weight zero, uUV has negative excess weight and is zero modulo [uv] by Levi's Theorem. Mapping $\mathfrak A$ into itself by D^0 , uUV = 0[uv] becomes

(3.1)
$$u_1UV + uD^0(U)V + uUD^0(V) \equiv 0 \ [uv].$$

Consider Q = UV as a power product in \mathfrak{A}_1 . Then $S = Uh^{-1}(V)$ in \mathfrak{A} has signature $\langle k-1, l \rangle$ and weight w = kl - 1 - l < (k-1)l; hence $S \equiv 0 [uv]$. Under D^0 , $S \equiv 0 [uv]$ becomes

$$(3.2) D^0(U)(h^{-1}(V)) + UD^0(h^{-1}(V)) \equiv 0 \ [uv].$$

Mapping & into &1, (3.2) becomes

(3.3)
$$D^{0}(U)V + UD^{1}(V) \equiv 0 \ [uv_{1}].$$

The derivation of $R\{u, v_1\}$, D', may be used in [uv] because using the mapping g of Theorem 3.5, $g^{-1}D^1g$ maps $uR\{u, v\}/(uv)$ into itself and u[uv]/(uv) into itself. Hence, by Corollary 2.7,

(3.4)
$$uD^{0}(U)V + uUD^{1}(V) \equiv 0 \ [uv].$$

Substituting (3.4) in (3.1) completes the proof.

LEMMA 3.4. Let $P = u_j UV$ and let h map \mathfrak{R} onto \mathfrak{R}_1 . If $Q = Uh^{-1}(T_{j-1}(V))$, then $Q \equiv 0[uv]$.

PROOF. By Theorem 3.2, $w(T_{j-1}(V^*)) = w(V) + (j-1)$ for each term $T_{j-1}(V^*)$ in $T_{j-1}(V)$. For each term Q^* in Q, $w(Q^*) = w(P) - j$

+(j-1)-l=kl-l-1<(k-1)l; and the signature of Q^* is $\langle k-1, l \rangle$. Hence $Q^*\equiv 0$ [uv] by Levi's Theorem.

THEOREM 3.5. Let $P = u_i U V$, then for all j > 0,

$$(3.5) P \equiv \frac{1}{i!} uUT_i(V) [uv].$$

PROOF. The proof is by induction on j, and the case j = 1 is covered by Theorem 3.3. Assume that (3.5) holds for values less than j. In \mathfrak{R} , $u_{j-1}UV \equiv 0 \lfloor uv \rfloor$ by Levi's Theorem. Under D^0 , we have

$$(3.6) iu_i UV \equiv (-u_{i-1}D^0(U)V - u_{i-1}UD^0(V)) [uv].$$

Applying the induction hypothesis to each term on the right (3.6) becomes

(3.7)
$$ju_{j}UV \equiv \left(-\frac{1}{(j-1)!}uD^{0}(U)T_{j-1}(V) - \frac{1}{(j-1)!}uUT_{j-1}(D^{0}(V))\right)[uv].$$

Map \Re onto \Re_1 by h and consider $Q = UT_{j-1}(V)$ as a power product in \Re_1 . Then $S = Uh^{-1}(T_{j-1}(V))$ is in [uv] by Lemma 3.4. Under D^0 , $S \equiv 0[uv]$ becomes

$$(3.8) D^{0}(U)h^{-1}(T_{j-1}(V)) + UD^{0}(h^{-1}(T_{j-1}(V))) \equiv 0 \ [uv].$$

Mapping & onto &1, (3.8) becomes

$$(3.9) D^{0}(U)T_{j-1}(V) + UD^{1}(T_{j-1}(V)) \equiv 0 \ [uv_{1}].$$

By Corollary 2.7, we get

$$(3.10) uD^{0}(U)T_{j-1}(V) + uUD^{1}(T_{j-1}(V)) \equiv 0 \ [uv].$$

Substituting (3.10) in (3.7) completes the proof.

- 4. The converse of H. Levi's Theorem for [uv]. Let $P = u_{i(1)}u_{i(2)} \cdots u_{i(k)}v_{j(1)}v_{j(2)}\cdots v_{j(l)}$ be of signature $\langle k,l\rangle$ and weight w. Assume that P has no factor of negative excess weight. By Theorem III of [4], without loss of generality, we may set w(P) = kl. If a sequence of k transformations exist such that
 - (1) $V = v_{j(1)} \cdot \cdot \cdot v_{j(l)}$ is changed to v_k^l ,
- (4.1) (2) in the tth transformation exactly i(t) v-subscripts are increased by one,
 - (3) $U = u_{i(1)} \cdot \cdot \cdot u_{i(k)}$ is changed to u^k ;

then P may be written congruent to a linear combination of α -terms of the same weight and signature as P, [3]. P is of excess weight zero and thus $P \equiv cu^k v_k^l [uv]$. The only question concerns the coefficient c, which is not zero, but is $(-1)^{i_1+i_2+\cdots+i_k}m$ where m is the number of sequences which transform V to v_k^l . Thus c=0 if and only if m=0, and we have proved

THEOREM 4.1. If P = UV has a nonnegative weight matrix, then P is not in [uv] if and only if V can be transformed to v_k^l by a sequence of n steps, in the tth of which exactly i(t) v-subscripts are increased by one.

It remains to characterize those U and V for which (4.1) exists.

At the tth step, suppose a power product M is transformed into a power product N as follows: u_t in M is replaced with u and the lowest t v-subscripts (assuming that $j(1) \leq j(2) \leq \cdots \leq j(t) \leq \cdots \leq j(l)$) are increased by one. Now, if N contains a factor with negative excess weight, then the same is true of M. More generally, we prove

THEOREM 4.2. Let M be a power product of signature $\langle k, l \rangle$ containing u_t , t>0 and t v's, $v_{j(1)} \cdot \cdot \cdot v_{j(t)}$, and let

$$N = M \frac{uv_{j(1)+1} \cdot \cdot \cdot v_{j(t)+1}}{u_t v_{j(1)} \cdot \cdot \cdot v_{j(t)}} \cdot$$

Then if G is any factor on N with excess weight e(G), there is a factor F of M with excess weight $e(F) \leq e(G)$.

PROOF. We may assume G has u as a factor; otherwise, by reducing the subscripts in G that have been raised we get a factor G^* of M with $e(G^*) \leq e(G)$. Therefore G is of the form uU_1V , where U_1 is a factor of U; notationally, let $U_1 = U$. If V involves no unchanged subscripts, then lowering the n subscripts of V that have been raised we get V^* and a factor UV^* of M with $e(UV^*) = w(U) + w(V) - n - (k-1)n = e(uUV)$. If V involves all the changed subscripts, then similarly $e(u_tUV^*) = t + w(U) + (W(V) - t) - k$ deg $V^* = e(uUV)$. If V involves an unchanged subscript but not all changed ones, we can exchange an unchanged subscript for a changed one except in the case that all the changed subscripts of N are j(t) + 1 and all the unchanged subscripts of C are C and C are C and C are C and C are C are C are C are C are C and C are C are C are C and C are C and C are C and C are C are C and C are C are C and C are C and C are C are C and C are C and C are C and C are C and C are C are C and C are C are C and C are C and C are C and C

$$e(uUv_{j(t)+1}^{p+1}v_{j(t)}^{q}) \leq e(uUv_{j(t)+1}^{p}v_{j(t)}^{q}).$$

In case 2,

$$e(uUv_{j(t)+1}^p v_{j(t)}^{q-1}) \le e(uUv_{j(t)+1}^p v_{j(t)}^q).$$

In either case, a factor F of M has been found such that $e(F) \leq e(G)$, and the proof is complete.

COROLLARY 4.3. If P = UV has a nonnegative weight matrix and excess weight zero, then $P \neq 0 [uv]$.

PROOF. By symmetry we may assume that $V \not\equiv 0(v)$. By Theorem 4.2, there is a sequence of transformations satisfying (4.1) which transforms P into the α -term $u^k v_k^l$.

COROLLARY 4.4. If $P = u_i v_j$, the smallest exponent q such that $P^q \equiv 0 [uv]$ is q = i + j + 1.

PROOF. $Q = (u_i v_j)^{i+j+1}$ has negative excess weight; hence, by Levi's Theorem is in [uv]. On the other hand, $S = (u_i v_j)^{i+j}$ has a nonnegative weight matrix, excess weight zero, and is not in [uv] by Corollary 4.3. This solves Ritt's exponent problem for [uv], ([1], p. 177).

Bibliography

- 1. J. F. Ritt, *Differential algebra*, Amer. Math. Soc. Colloq. Publ., Vol. 33, Amer. Math. Soc., Providence, R. I., 1950.
- 2. H. Levi, On the structure of differential polynomials and on their theory of ideals, Trans. Amer. Math. Soc. 51 (1942), 532-568.
 - 3. D. G. Mead, Differential ideals, Proc. Amer. Math. Soc. 6 (1955), 420-432.
 - **4.** ——, A note on the ideal [uv], Proc. Amer. Math. Soc. **14** (1963), 607–608.
- 5. K. B. O'Keefe, A property of the differential ideal $[y^p]$, Trans. Amer. Math. Soc. 94 (1960), 483-497.
- 6. _____, A symmetry theorem for the differential ideal [uv], Proc. Amer. Math. Soc. 12 (1961), 654-657.
 - 7. ——, On a problem of J. F. Ritt, Pacific Math. J. (to appear).

University of Washington and

THE BOEING COMPANY