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1. Introduction. In Euclidean 3-dimensional space an isometric

immersion is flat if and only if its second fundamental form operators

are singular at each point. A similar result holds for hypersurfaces

of Euclidean w-space, 7?". However the flat torus can be isometrically

immersed in 7?4 in such a way that at any point, almost all of its sec-

ond fundamental form operators are nonsingular. In fact any com-

pact immersion has this property. This can be seen from the results

of [3] which show that the total curvature of such an immersion is

always strictly positive while the total curvature is equal to the inte-

gral over the manifold of K* where K* at a point can be expressed

as the integral of the absolute values of the determinants of the sec-

ond fundamental form operators. We shall characterize the pointwise

behavior of certain immersions with singular second fundamental

form operators and from this result describe immersions having this

property at every point; i.e. immersions of zero total curvature.

Let Md and Md+k denote C°° Riemannian manifolds and leti/- denote

an isometric immersion from M into M. The index of relative nullity v,

[2], assigns to each m in M the dimension v(m) of the subspace of

vectors x in the tangent space Mm such that Tx = 0. The linear differ-

ence operators Tx act on Af^(m) and contain the same information as

the second fundamental form operators 52 where z is a tangent vector

to M orthogonal to dip(Mm), [l]. These operators are characterized

by their skew-symmetry and the relations Tx(z) —d\p(Szx). To simplify

notation we shall identify elements of Mm and d\p(Mm) when it seems

safe to do so. The immersion \p is developable at m in M if on all planes

P in Mm the sectional curvature of P is equal to the sectional curva-

ture of dif'(P) in M+(m). We shall later use the result, which follows

from the Gauss equation for an immersion, that developability is

characterized by the relation (Txx, Tvy) = (Txy, Txy) for all x, y in

Mm. By extension of a result in [2] it can be shown that v(m) ^d — k

for an immersion developable at m. Thus for k<d it follows that Sz

is singular for all z in M^(m) orthogonal to d\p(Mm). In particular these

observations together with the Chern-Lashoff results quoted above,

imply Tompkin's theorem [8]: If k<d there are no compact immer-

sions of a locally flat Md in Rd+k. We now consider the case in which

k=d.
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2. Results.

Theorem. An isometric immersion of Md into M2d which is de-

velopable at m in M has all singular second fundamental form operators

at m if and only if v(m) ^ 1.

Proof. We always assume below that z is in M$(m) and orthogonal

to d\l/(Mm). Clearly if v(m) ^ 1 then, since Txz = Szx, all Sz are singu-

lar. Conversely, if all Sz are singular we define the function f(u)

= {Tuu, Tuu) where u is in Mm and (u, u) = l. Let x denote a minimum

of this function. If this minimum has the value zero then the proof is

finished since the developability of \p implies that for all u in Mm,

0={Txx, Tuu) = (Txu, Txu). We assume Txx is not zero and seek a

contradiction.

Case 1. Assume Tx is singular. Then for some u in Mm orthogonal to

x and some number a, Txu=aTxx. The function y(d) —x cos 6-\-u sin d

lies in the domain of/and a simple calculation using the bilinearity of

T shows that

(/oy)'(0) = A(Txx,Txu).

But since x was a critical point of/, this number is zero and hence

a = 0, Txu = 0, and therefore (Txx, Tuu) = 0. A second calculation

shows

(Jo y)"(0) = 4{{Txx, Tuu) - {Txx, Txx) + 2(Txu, Txu)\ ^ 0,

the inequality following from the minimality property of x. Since

the first and last terms above are zero, we get the desired contradic-

tion, namely, Txx = 0.

Case 2. If Tx is not singular then there exists a z such that Txz = bx

where b^O. This implies that x is an eigenvector of the symmetric

and singular operator S„, and hence that there exists a u, orthogonal

to x in Mm, such that Szu = 0. Now for all v in Mm orthogonal to x we

have (Txx, Txv) = 0 since x is a critical point. Hence the Txv span a

hyperplane of the rf-dimensional complement of d\p(Mm) in M^tm) and

the normal to this hyperplane is Txx. Likewise (Txv, z)=—(Txz, v)

= {bx, v) = 0. Hence z is parallel to Txx or z = cTxx with cj^O. There-

fore c{Tuu, Txx) = (Tuu, s)= —(Tuz, w) = 0 since Tuz = 0. Thus

(Tuu, Txx) = (Txu, Txu) = 0, or Txu = 0, a contradiction to the non-

singularity of Tx. Thus Case 2 cannot occur.

Corollary 1. An isometric immersion of M2 into MA has all singular

second fundamental form operators at m in M if and only if v(m) ^ 1.

Since the difference in the sectional curvatures of a plane P in Mm
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and d\{/(P) is just the sum of the determinants of Sz and Sw where z

and w are perpendicular, the singularity of Sz and 5,„ imply the de-

velopability of the immersion at m.

Before giving some implications of this theorem we summarize

some definitions and results. Let N denote the bundle of normal k-

frames of Md relative to \p: i.e.

N = {(m, £) | w e M and E is a k frame (orthonormal set of k vectors)

of M^im) orthogonal to d\p(Mm)}.

The Riemannian connection of Md+k induces a natural connection on

N. The curvature form of this connection is called the relative curva-

ture of \l>, [4]; it is easy to show that a developable immersion between

two manifolds of constant curvature has zero relative curvature at

m if and only if all Tx commute for all x in Mm, cf. p. 203 of [4].

Finally x//: Md—+Rd+k is called n-cylindrical provided M and \p can be

expressed as Riemannian products Md = Bd~"XRn and \j/ = \pX I where

$ is an isometric immersion of Bd~n into Rd+k-n and 1 is the identity

map of 7?". Let Md(C) denote a manifold of constant Riemannian

curvature C. The fundamental result of [5] can be stated in the

slightly more general form: If^i is an isometric immersion from a com-

plete Md(C) into Md+k(C) then there exists a totally geodesic complete

submanifold of M of dimension equal to the minimum value taken on by

the function v. This submanifold is totally geodesic in M relative to \p.

Similarly Theorem 3 of [7] states that under the above conditions—

if C>0; the minimum value of the relative nullity is at least 1; and the

relative curvature ofxp is zero, then tp is totally geodesic. Finally Theorem

1 of [7] states that if Md+k(C) =Rd+k and if v is constant on M then

\p is a product immersion.

Corollary 2. Every immersion of a complete locally Euclidean Md

in R2d having all singular second fundamental form operators at every

point is unbounded.

This is because the image of \j/ will contain a line of R2d. Similar

results could be stated for the cases where both manifolds are of

equal negative or positive curvature; cf. Corollaries 2 and 3 of [S].

Corollary 3. Every immersion of a locally Euclidean Md in R2d

with all singular second fundamental form operators at each point and

constant relative nullity is a product immersion.

Corollary 4. An immersion of M2(C) into Mi(C) with all singular

second fundamental form operators at m in M has zero relative curvature

at m.
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This follows from the fact that an orthonormal basis x, y of Mm can

be picked such that Tx = 0; this implies that all the difference oper-

ators at m will commute. The immersion of the flat torus in R4 as a

product of two circles shows that the converse of Corollary 4 is false.

Corollary 5. An immersion of a complete M2(C) into M*(C) with

all second fundamental form operators singular everywhere is totally

geodesic whenever 00.
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