
REFLEXIVE COMPACT MAPPINGS1

EDWIN DUDA

1. Introduction. A mapping / from one topological space X to

another F is called reflexive compact provided that/_1/(^4) is com-

pact for every compact subset A of X. We prove that this condition

characterizes mappings that generate an upper-semicontinuous

(u.s.c.) decomposition. We show that a class of mappings that gen-

eralize e-mappings is a class of reflexive compact mappings. We also

show how reflexive compactness of a mapping implies compactness

of a mapping. Finally as an application we prove a result about map-

pings on the plane which generalizes theorems of [8], [9],  [12].

2. Notation and definitions. Throughout X and F will represent

topological Hausdorff spaces and/will be mapping (continuous func-

tion) of X into F. A mapping / of X into F is said to generate an

u.s.c. decomposition of X if for every open set U of X, the union V

of point inverses/_1(y) contained in U is an open subset of X; see

[l], [7]. A mapping is monotone if point inverses are compact and

connected. A mapping is compact if the inverse image of each com-

pact set is compact. A topological space X is a fc-space if a subset

C of X intersects each compact set D in a closed set implies C is a

closed set, [6]. A mapping on a metric space is an e-mapping if all

point inverses have diameter less than e.

3. Upper-semicontinuity. In this section we obtain a character-

ization of mappings with compact point inverses that generate an

u.s.c. decomposition. As in [ll] every closed mapping generates an

u.s.c. decomposition. Also, if / is a mapping from a locally compact

space X to a space F with components of point inverses compact,

then the decomposition of X into components of point inverses is

u.s.c; see [2], [9], [ll]. In particular, a monotone mapping on a

locally compact space generates an u.s.c. decomposition.

Theorem 1. Let X be a k-space and f a mapping of X into Y. If f is

a reflexive compact mapping then f generates an upper-semicontinuous

decomposition.

Proof. Let U be an open set in X containing a point inverse and

let V be the union of the point inverses contained in U. We show
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U — V is closed in X which in turn implies V is open in X and conse-

quently / generates an u.s.c. decomposition. Let C be a compact set

in X such that H=(U- V)C\C^0. For each point x in II, tf(x)

C\(X-U)^0. Thus we obtain

(i) tf{H) r\{x-u)= f~f(c n V) n (x - u).

The right member is compact which implies compactness of the left

member. Denoting the set in line (1) above by M we obtain

/->/(M)n u = /-x/(cnu)n (F - f).

The left member is compact and hence so is the right member. The

set Cr\(U— V) is closed for it is the intersection of the compact sets

C and f-f{Cr\U)r\(V- V). Thus X being a yfe-space implies 17- F is
a closed subset of X.

It is established in [6] that every locally compact or first countable

Hausdorff space is a &-space.

Corollary 1. Let X be a locally compact or first countable space and

f a mapping of X into Y. If f is a reflexive compact mapping, then f

generates an u.s.c. decomposition.

We now prove a theorem which implies the converse of Theorem 1

is true. Note that the property of being a &-space is not needed in

the following theorem.

Theorem 2. Let f be a mapping with compact point inverses of a

space X into a space Y. If f generates an upper-semicontinuous decom-

position, then f is reflexive compact.

Proof. Let { Ua\, a(ET, be an open cover of f^fiA), where A is

compact subset of X. For each x in A, there is some finite number of

the Ua that cover/_1/(x). Denote the union of one of these finite col-

lections covering /_1/(x) by Vx. By u.s.c. of the decomposition of X

into point inverses the union Wx of the point inverses contained in

Vx is an open set with the property that if y e WXC^A, then f"lf(y) C Wx.

The collection {Wx\, x£4, is an open cover of A so there exists a

finite number WXl, WX2, • • • , WXn, that cover A. The { WXi},

i—\, 2, ■ ■ ■ , n, also cover f~lf{A) and with each WXi there is associ-

ated a finite number of Ua. These n finite collections of Ua give the

required finite open cover of f"lf(A).

Theorem 3. Let f be a mapping with compact point inverses of a k-

space X into a space Y. The mapping f generates an upper-semicon-

tinuous decomposition if and only if f is reflexive compact.
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A characterization of all mappings / that generate an upper-

semicontinuous decomposition that is independent of the spaces in-

volved is to simply require that/_1/(C) be a closed subset of the do-

main space whenever C is a closed subset of the domain space. How-

ever, for the applications of this paper the result of Theorem 3 is

needed.

The characterization in Theorem 3 can be generalized to mappings

with noncompact point inverses reasonably well if the domain space

is required to be locally compact. (See [4].) In order to discuss this

generalization the following definition is needed. Let {Fa} be a col-

lection of closed subsets of a locally compact space X. The collection

{ Fa} is said to be scattered if every compact set A in X meets only

finitely many of the Fa. Now if G is an upper-semicontinuous de-

composition of X into closed sets, then by the results of [4], the col-

lection of noncompact elements of G must be scattered and their

union F is a closed set. Thus, if / is a mapping of a locally compact

space X into a space F that generates an u.s.c. decomposition and F

is the union of the noncompact point inverses then / restricted to

X — F is reflexive compact. Conversely if / is a mapping such that

the set of noncompact point inverses is scattered and / restricted to

the complement of the union of the noncompact point inverses is

reflexive compact, then / generates an u.s.c. decomposition.

4. e-mappings. In a metric space X let p be the distance function

and for any set A in X, let 8(A) be the diameter of A. The condition

on / in the following theorem is a generalization of a condition im-

posed in [8].

Theorem 4. Let f be a mapping of a metric space X into a space Y.

If for every sequence of distinct points xn with no limit point and y0 in X

,.   . , «(/-'/W) ̂  ,
hmmf- < 1,

p(yo, xn)

then f is reflexive compact.

Proof. Clearly the condition implies point inverses must be com-

pact. Suppose f~lf(A) is not compact for some compact set A. There

exists a sequence of distinct points {xn} in f"!f(A) with no limit

point. For each positive integer n, let yn be a point of f~lf(xn)r\A.

We can suppose that {y„\ converges to a point y0 in A. For n suffi-

ciently large we have
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8(/-V(»»)) > Sjf-Wxn)) p(yn, xn) 1

p(yo, xn)   ~ p(yo, yn) + p(yn, *»)      p(yo, yn) p(yo» y»)

p(y«, *») p(y«» x»)

Since lim„<0O p(yo, y») =0 and p(y„, #n) is bounded away from zero for

n sufficiently large, it follows that

sif-'fM)
liminf-S: 1.

«-»     p(jyo, *n)

Corollary 1.7// is aw e-mapping on a metric space X in which

closed and bounded sets are compact into a space Y, then f is reflexive

compact.

5. Compact mappings. Let / be a mapping of X into F A set 5

of X is an inverse set of / if /_1/(5) = 5. A mapping is quasi-compact

provided that the image of every open inverse set is an open set [ll].

The following theorem and its corollaries relate reflexive compactness

of a mapping to compactness [ll], [12].

Theorem 5. Let f(X) = Y be a mapping, where X is a k-space. If f

is quasi-compact and reflexive compact, then f is a compact mapping.

Proof. Let { Ua}, «er. be an open cover of f~l(K), where K is a

compact subset of F By Theorem 1,/generates an u.s.c. decomposi-

tion of X. As in the proof of Theorem 2, the cover { Ua) can be

related to an open cover { Vy}, y(E.K, of f~lf(K), where each Vy is

an open inverse set contained in the union of a finite number of Ua.

Thus {f(Vy)}, y€zK, is an open cover of K and by compactness of K

there is some finite numberf(Vvl),f(Vv,), ■ ■ • ,f(VyJ, that cover K.

The Vyi, Vvv ■ ■ ■ , VVn cover f~l(K) and hence some finite number

of the Ua also cover K.

Every open or closed mapping is a quasi-compact mapping, hence

with the same conditions on the spaces that appear in Theorem 5, we

obtain the following corollary.

Corollary 1. If f is an open (closed) mapping and reflexive com-

pact, then f is a compact mapping.

We have already observed that every monotone mapping on a

locally compact space generates an u.s.c. decomposition. Thus, each

such mapping is reflexive compact. Furthermore, it is not difficult to

show that local compactness is a necessary condition on the domain
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space. We obtain immediately the following corollaries.

Corollary 2. // f(X) = Y is a monotone quasi-compact mapping,

where X is locally compact, then f is a compact mapping.

Corollary 3. // f(X) = Y is a monotone open (closed) mapping,

where X is locally compact, then f is a compact mapping.

6. Plane mappings. In [3] K. Borsuk shows that every e-mapping

/ of Euclidean w-space En into En is a compact mapping of E" onto

f(En). In [8] K. A. Sitnikov generalizes Borsuk's result by replacing

e-mappings with a condition that is more restrictive than that of

Theorem 4. In [12] G. T. Whyburn shows that every monotone

mapping of the plane onto the plane is a compact mapping. The last

two results are independent for mappings of the plane onto the plane.

In this section we propose to show that every reflexive compact map-

ping of the plane onto the plane is a compact mapping.

A locally connected generalized continuum is a locally connected,

locally compact, connected separable metric space. Let/(X) = F be a

reflexive compact mapping, where X and F are locally connected

generalized continua. Then, as we have seen, / generates an u.s.c.

decomposition of X. Let M be the decomposition space determined

and 7t the natural mapping from X onto M. It is well known [10], [ll],

that M is a locally connected generalized continuum and that ir is a

compact mapping. Also true is that there is a 1-1 mapping h of M

onto F such that/(x) =hir(x) for all x in X.

Theorem 6. Let f(X) = E2 be a mapping, where X is a locally con-

nected generalized continuum with the property that the complement of

every compact subset K of X has only one nonconditionally compact com-

ponent. If f is reflexive compact then f is a compact mapping.

Proof. Let M be the decomposition space generated by /, ir the

natural mapping and h the mapping of M onto E2 with the property

that/(x) =hir(x) for all x in X. Since -k is a compact mapping it fol-

lows that the complement of every compact set K of M has only one

nonconditionally compact component. Thus, by the Theorem of [5]

h must be a homeomorphism. Since/ is the composition of two com-

pact mappings it is also a compact mapping.

Theorem 7. If f(E2) =£2 is a reflexive compact mapping, thenf is a

compact mapping.

There is an example of a monotone map of E2 into the unit circle S1

which is not a compact mapping. Furthermore an example of K.
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Whyburn in [13] shows that the method used in this paper to prove

Theorem 7 may not be extendible to higher dimensional Euclidean

spaces.
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