A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS

C. A. SWANSON ${ }^{1}$

Clark and the author [2] recently obtained a generalization of the Hartman-Wintner comparison theorem [4] for a pair of self-adjoint second order linear elliptic differential equations. The purpose of this note is to extend this generalization to general second order linear elliptic equations. As in [2], the usual pointwise inequalities for the coefficients are replaced by a more general integral inequality. The result is new even in the one-dimensional case, and extends Leighton's result for self-adjoint ordinary equations [5].

Protter [6] obtained pointwise inequalities in the nonself-adjoint case in two dimensions by the method of Hartman and Wintner [4]. We obtain an alternative to Protter's result as a corollary of our main theorem.

Let R be a bounded domain in n-dimensional Euclidean space with boundary B having a piecewise continuous unit normal. The linear elliptic differential operator L defined by

$$
\begin{equation*}
L u=\sum_{i, j=1}^{n} D_{i}\left(a_{i j} D_{j} u\right)+2 \sum_{i=1}^{n} b_{i} D_{i} u+c u, \quad a_{i j}=a_{j i} \tag{1}
\end{equation*}
$$

will be considered in R, where D_{i} denotes partial differentiation with respect to $x^{i}, i=1,2, \cdots, n$. We assume that the coefficients $a_{i j}, b_{i}$, and c are real and continuous on \bar{R}, the b_{i} are differentiable in R, and that the symmetric matrix ($a_{i j}$) is positive definite in R. A "solution" u of $L u=0$ is supposed to be continuous on \bar{R} and have uniformly continuous first partial derivatives in R, and all partial derivatives involved in (1) are supposed to exist, be continuous, and satisfy $L u=0$ in R.

Let $Q[z]$ be the quadratic form in $(n+1)$ variables $z_{1}, z_{2}, \cdots, z_{n+1}$ defined by

$$
\begin{equation*}
Q[z]=\sum_{i, j=1}^{n} a_{i j} z_{i} z_{j}-2 z_{n+1} \sum_{i=1}^{n} b_{i} z_{i}+g z_{n+1}^{2}, \tag{2}
\end{equation*}
$$

where the continuous function g is to be determined so that this form is positive semidefinite. The matrix Q associated with $Q[z]$ has the block form

[^0]\[

Q=\left($$
\begin{array}{rr}
A & -b \\
-b^{T} & g
\end{array}
$$\right), \quad A=\left(a_{i j}\right),
\]

where b^{T} is the n-vector $\left(b_{1}, b_{2}, \cdots, b_{n}\right)$. Let B_{i} denote the cofactor of $-b_{i}$ in Q. Since A is positive definite, a necessary and sufficient condition for Q to be positive semidefinite is $\operatorname{det} Q \geqq 0$, or

$$
\begin{equation*}
g \operatorname{det}\left(a_{i j}\right) \geqq-\sum_{i=1}^{n} b_{i} B_{i} . \tag{3}
\end{equation*}
$$

The proof is a slight modification of the well-known proof for positive definite matrices [3, p. 306].

Let J be the quadratic functional defined by

$$
\begin{equation*}
J[u]=\int_{R} F[u] d x \tag{4}
\end{equation*}
$$

where

$$
F[u]=\sum_{i, j} a_{i j} D_{i} u D_{j} u-2 u \sum_{i} b_{i} D_{i} u+(g-c) u^{2},
$$

with domain \mathfrak{D} consisting of all real-valued continuous functions on \bar{R} which have uniformly continuous first partial derivatives in R and vanish on B.

Lemma. Suppose g satisfies (3). If there exists $u \in \mathfrak{D}$ not identically zero such that $J[u]<0$, then every solution v of $L v=0$ vanishes at some point of \bar{R}.

Proof. Suppose to the contrary that there exists a solution $v \neq 0$ in \bar{R}. For $u \in \mathfrak{D}$ define

$$
\begin{aligned}
X^{i} & =v D_{i}(u / v) ; \\
Y^{i} & =v^{-1} \sum_{j} a_{i j} D_{j} v, \quad i=1,2, \cdots, n ; \\
E[u, v] & =\sum_{i, j} a_{i j} X^{i} X^{j}-2 u \sum_{i} b_{i} X^{i}+g u^{2}+\sum_{i} D_{i}\left(u^{2} Y^{i}\right) .
\end{aligned}
$$

A routine calculation yields the identity

$$
E[u, v]=F[u]+u^{2} v^{-1} L v .
$$

Since $L v=0$ in R,

$$
\begin{equation*}
J[u]=\int_{R}\left[\sum_{i, j} a_{i j} X^{i} X^{j}-2 u \sum_{i} b_{i} X^{i}+g u^{2}\right] d x \tag{5}
\end{equation*}
$$

$$
+\int_{R} \sum_{i} D_{i}\left(u^{2} Y^{i}\right) d x
$$

Since $u=0$ on B, the second integral is zero by Green's formula. The first integrand is a positive semidefinite form by hypothesis (3). The contradiction $J[u] \geqq 0$ establishes the lemma.

Consider in addition to (1) a second differential operator L^{*} of the same form,

$$
L^{*} u=\sum_{i, j=1}^{n} D_{i}\left(a_{i j}^{*} D_{j} u\right)+2 \sum_{i} b_{i}^{*} D_{i} u+c^{*} u, \quad a_{i j}^{*}=a_{j i}^{*}
$$

in which the coefficients satisfy the same conditions as the coefficients in (1). L^{*} is the Euler-Jacobi operator associated with the quadratic functional J^{*} defined by

$$
\begin{equation*}
J^{*}[u]=\int_{R}\left[\sum_{i, j} a_{i j}^{*} D_{i} u D_{j} u-2 u \sum_{i} b_{i}^{*} D_{i} u-c^{*} u^{2}\right] d x . \tag{6}
\end{equation*}
$$

Define $V[u]=J^{*}[u]-J[u], u \in \mathfrak{D}$. Since $u=0$ on B, it follows from partial integration that

$$
\begin{align*}
& V[u]=\int_{R}\left[\sum\left(a_{i j}^{*}-a_{i j}\right) D_{i} u D_{j} u\right. \\
&\left.+\left\{\sum D_{i}\left(b_{i}^{*}-b_{i}\right)+c-c^{*}-g\right\} u^{2}\right] d x . \tag{7}
\end{align*}
$$

Theorem 1. Suppose g satisfies (3). If there exists a nontrivial solution u of $L^{*} u=0$ in R such that $u=0$ on B and $V[u]>0$, then every solution of $L v=0$ vanishes at some point of \bar{R}.

Proof. The hypothesis $V[u]>0$ is equivalent to $J[u]<J^{*}[u]$. Since $u=0$ on B, it follows from Green's formula that $J^{*}[u]=0$. Hence the hypothesis $J[u]<0$ of the lemma is fulfilled.

Theorem 2. Suppose $g \operatorname{det}\left(a_{i j}\right)>-\sum b_{i} B_{i}$. If there exists a nontrivial solution of $L^{*} u=0$ in R such that $u=0$ on B and $V[u] \geqq 0$, then every solution of $L v=0$ vanishes at some point of \bar{R}.

Since Q is positive definite, the lemma is valid when the hypothesis $J[u]<0$ is replaced by $J[u] \leqq 0$. The proof of Theorem 2 is then analogous to that of Theorem 1.

In the case that equality holds in (3), that is

$$
\begin{equation*}
g=-\sum_{i} b_{i} B_{i} / \operatorname{det}\left(a_{i j}\right) \tag{8}
\end{equation*}
$$

define

$$
\delta=\sum D_{i}\left(b_{i}^{*}-b_{i}\right)+c-c^{*}-g .
$$

L is called a "strict Sturmian majorant" of L^{*} by Hartman and Wintner [4] when the following conditions hold: (i) $\left(a_{i j}^{*}-a_{i j}\right)$ is positive semidefinite and $\delta \geqq 0$ in \bar{R}; (ii) either $\delta>0$ at some point or ($a_{i j}^{*}-a_{i j}$) is positive definite and $c^{*} \neq 0$ at some point. The corollary below follows immediately from Theorem 1.

Corollary. Suppose that L is a strict Sturmian majorant of L^{*}. If there exists a solution u of $L^{*} u=0$ in R such that $u=0$ on B and u does not vanish in any open set contained in R, then every solution of $L v=0$ vanishes at some point of \bar{R}.

If the coefficients $a_{i j}^{*}$ are of class $C^{2,1}(R)$ (i.e. all second derivatives exist and are Lipschitzian), the hypothesis that u does not vanish in any open set of R can be replaced by the condition that u does not vanish identically in R because of Aronszajn's unique continuation theorem [1].

In the case $n=2$ considered by Protter [6], the condition $\delta \geqq 0$ reduces to

$$
\begin{align*}
& \left(a_{11} a_{22}-a_{12}^{2}\right)\left(\sum_{i=1}^{2} D_{i}\left(b_{i}^{*}-b_{i}\right)+c-c^{*}\right) \tag{9}\\
& \quad \geqq a_{11} b_{2}^{2}-2 a_{12} b_{1} b_{2}+a_{22} b_{1}^{2}
\end{align*}
$$

which is considerably simpler than Protter's condition. It reduces to Protter's condition

$$
\sum_{i=1}^{2} D_{i} b_{i}^{*}+c-c^{*} \geqq 0
$$

in the case that $b_{1}=b_{2}=0$, and also in the case that $a_{12}=a_{12}^{*}=0$, $a_{11}=a_{11}^{*}, a_{22}=a_{22}^{*}$. (Two incorrect signs appear in [6]).

The following example in the case $n=2$ illustrates that Theorem 1 is more general than the pointwise condition (9). Let R be the square $0<x^{1}, x^{2}<\pi$. Let L^{*}, L be the elliptic operators defined by

$$
\begin{aligned}
L^{*} u & =D_{1}^{2} u+D_{2}^{2} u+2 u, \\
L v & =D_{1}^{2} v+D_{2}^{2} v+D_{1} v+c v,
\end{aligned}
$$

where

$$
c\left(x^{1}, x^{2}\right)=f\left(x^{1}\right) f\left(x^{2}\right)+5 / 4,
$$

and $f \in C[0, \pi]$ is not identically zero. The function $u=\sin x^{1} \sin x^{2}$ is zero on B and satisfies $L^{*} u=0$. The condition $V[u]>0$ of Theorem 1 reduces to

$$
\int_{0}^{\pi} \int_{0}^{\pi} f\left(x^{1}\right) f\left(x^{2}\right) \sin ^{2} x^{1} \sin ^{2} x^{2} d x^{1} d x^{2}>0 .
$$

Since this is fulfilled, every solution of $L v=0$ vanishes at some point of \bar{R}. This cannot be concluded from (9) or from Protter's result [6] unless f has constant sign in R.

In the case $n=1, L$ is an ordinary differential operator of the form

$$
L u=\left(a u^{\prime}\right)^{\prime}+2 b u^{\prime}+c u,
$$

and R is an interval (x_{1}, x_{2}). We assert that \bar{R} can be replaced by R in the lemma and theorems; for v can have at most a simple zero at the boundary points x_{1} and x_{2}, and hence the first integral on the right side of (5) exists and is nonnegative provided only that $v \neq 0$ in R.

Theorem 3. If there exists a nontrivial solution u of $L^{*} u=0$ in R such that $u=0$ on B and

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}}\left[\left(a^{*}-a\right) u^{\prime 2}+\left(b^{* \prime}-b^{\prime}+c-c^{*}-\frac{b^{2}}{a}\right) u^{2}\right] d x>0 \tag{10}
\end{equation*}
$$

then every solution of $L v=0$ has a zero in (x_{1}, x_{2}).
In the self-adjoint case $b=b^{*}=0$ it was shown by Clark and the author [2] that the strict inequality in the hypothesis $V[u]>0$ of Theorem 1, and therefore also in (10), can be replaced by \geqq. Indeed, this is transparent when the proof of the above lemma is specialized to the self-adjoint case. With $>$ replaced by \geqq, (10) reduces to Leighton's condition in the self-adjoint case [5].

References

1. N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. 36 (1957), 235-249.
2. Colin Clark and C. A. Swanson, Comparison theorems for elliptic differential equations, Proc. Amer. Math. Soc. 16 (1965), 886-890.
3. F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea, New York, 1959.
4. Philip Hartman and Aurel Wintner, On a comparison theorem for self-adjoint partial differential equations of elliptic type, Proc. Amer. Math. Soc. 6 (1955), 862-865.
5. Walter Leighton, Comparison theorems for linear differential equations of second order, Proc. Amer. Math. Soc. 13 (1962), 603-610.
6. M. H. Protter, A comparison theorem for elliptic equations, Proc. Amer. Math. Soc. 10 (1959), 296-299.

The University of British Columbia

q-ANALOGUES OF CAUCHY'S FORMULAS

WALEED A. AL-SALAM

1. Let q be a given number and let α be real or complex. The α th "basic number" is defined by means of $[\alpha]=\left(1-q^{\alpha}\right) /(1-q)$. This has served as a basis for an extensive amount of literature in mathematics under such titles as Heine, basic, or q-series and functions. The basic numbers also occur naturally in many theta identities. The works of Jackson (for bibliography see [2]) and Hahn [3] have stimulated much interest in this field.

One important operation that is intimately connected with basic series as well as with difference and other functional equations is the q-derivative of a function f. This is defined by

$$
\begin{equation*}
D f(x)=\frac{f(q x)-f(x)}{x(q-1)} . \tag{1.1}
\end{equation*}
$$

Jackson defined the operations, which he called q-integration,

$$
\begin{equation*}
\int_{0}^{x} f(t) d(q, t)=x(1-q) \sum_{k=0}^{\infty} q^{k} f\left(x q^{k}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x}^{\infty} f(t) d(q, t)=x(1-q) \sum_{k=0}^{\infty} q^{-k} f\left(x q^{-k}\right) \tag{1.3}
\end{equation*}
$$

Received by the editors October 28, 1965 and, in revised form, November 30, 1965.

[^0]: Received by the editors October 21, 1965.
 ${ }^{1}$ This research was supported by the United States Air Force Office of Scientific Research, under grant AF-AFOSR-379-65.

