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Clark and the author [2] recently obtained a generalization of the

Hartman-Wintner comparison theorem [4] for a pair of self-adjoint

second order linear elliptic differential equations. The purpose of this

note is to extend this generalization to general second order linear

elliptic equations. As in [2], the usual pointwise inequalities for the

coefficients are replaced by a more general integral inequality. The

result is new even in the one-dimensional case, and extends Leighton's

result for self-adjoint ordinary equations [5].

Protter [6] obtained pointwise inequalities in the nonself-adjoint

case in two dimensions by the method of Hartman and Wintner [4].

We obtain an alternative to Protter's result as a corollary of our main

theorem.

Let R be a bounded domain in w-dimensional Euclidean space with

boundary B having a piecewise continuous unit normal. The linear

elliptic differential operator L defined by

» n

(1) Lu =   Y Di(a{jDju) + 2 Y biDtu + cu,        a{j = ay;
»,y-i 1=1

will be considered in R, where Dt denotes partial differentiation with

respect to x\ i—l, 2, ■ ■ ■ , n. We assume that the coefficients a{j, bit

and c are real and continuous on R, the bi are differentiable in R, and

that the symmetric matrix (a^) is positive definite in R. A "solution"

u of Lu = 0 is supposed to be continuous on R and have uniformly

continuous first partial derivatives in R, and all partial derivatives

involved in (1) are supposed to exist, be continuous, and satisfy

Lu = 0 in R.

Let Q[z] be the quadratic form in (w + 1) variables Zi, z2, ■ ■ ■ , zn+i

defined by
n n

(2) Q[z] =   Y aijZiZj - 2zn+i Y °0i + gZn+i,
i,j—l i-l

where the continuous function g is to be determined so that this form

is positive semidefinite. The matrix Q associated with Q[z] has the

block form

Received by the editors October 21, 1965.

1 This research was supported by the United States Air Force Office of Scientific

Research, under grant AF-AFOSR-379-65.

611



612 C. A. SWANSON [June

/     A    -b\

Q={_bT      J,        A = iaij),

where bT is the w-vector (&i, b2, ■ ■ ■ , b,/). Let Bi denote the cofactor

of —bi in Q. Since A is positive definite, a necessary and sufficient

condition for Q to be positive semidefinite is det <2 = 0> °r

n

(3) g det (««,) ̂  - zZ btBi.
i=l

The proof is a slight modification of the well-known proof for positive

definite matrices [3, p. 306].

Let / be the quadratic functional defined by

(4) J[u] =   I  F[u] dx
•J R

where

F[u] = zZ atjDiuDjU — 2uzZ biDiU + {g — c)u2,
i.i i

with domain 3) consisting of all real-valued continuous functions on

R which have uniformly continuous first partial derivatives in R and

vanish on B.

Lemma. Suppose g satisfies (3). // there exists uE& not identically

zero such that J[u] <0, then every solution v of Lv = 0 vanishes at some

point of R.

Proof. Suppose to the contrary that there exists a solution v^O

in R. For m£3) define

X* = vDiiu/v);

yi = B-i J] anDjV,       i = 1, 2, • • • , »;
i

E[u, v] = zZ atjX'Xi -2uzZ °iX' + gu2 + zZ A(«2F«).
i,3 i i

A routine calculation yields the identity

E[u, v] = F[u] + u2v~1Lv.

Since Lv = 0 in R,
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J[u]=  ]   \zZ aijX<Xi -2uzZ biX{ + gu2   dx
(5) JBliJ ' J

+  f JZ Dii^Y*) dx.
J R    i

Since u = 0 on B, the second integral is zero by Green's formula. The

first integrand is a positive semidefinite form by hypothesis (3). The

contradiction J[w]^0 establishes the lemma.

Consider in addition to (1) a second differential operator L* of the

same form,

L « =   zZ Di{aijDju) + 2 zZ °i Diu + c u,       a# = a,-,-
».y-i »

in which the coefficients satisfy the same conditions as the coefficients

in (1). L* is the Euler-Jacobi operator associated with the quadratic

functional J* defined by

(6) / [u] =  I   \  zZ aijDiuDjU — 2u zZ bi P>iU — c*u2   dx.
-I R L i,j »• J

Define V[u] =/*[«]— J[u], uEQ- Since u = 0 on B, it follows

from partial integration that

F[«] =  I  [zZ (°« — aij)DiuDjU
J R

(7)
+ {IZ Diib? -b/) + c- c* - g}u2] dx.

Theorem 1. Suppose g satisfies (3). If there exists a nontrivial solu-

tion u of L*m = 0 in R such that w = 0 on B and F[m]>0, then every

solution of Lv = 0 vanishes at some point of R.

Proof. The hypothesis F[m]>0 is equivalent to J[u]<J*[u].

Since w = 0 on B, it follows from Green's formula that J*[u]=0.

Hence the hypothesis J[u] <0 of the lemma is fulfilled.

Theorem 2. Suppose g det (a,j) > — zZ°iBi- If there exists a non-

trivial solution of L*u = 0 in R such that u = 0 on B and V[u] ^0, then

every solution of Lv = 0 vanishes at some point of R.

Since Q is positive definite, the lemma is valid when the hypothesis

J[u]<0 is replaced by J[u]^0. The proof of Theorem 2 is then

analogous to that of Theorem 1.
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In the case that equality holds in (3), that is

(8) g = - E biBi/det (o<y),
t

define

5 = Y Di(b? - bi) + c-c* - g.

L is called a "strict Sturmian majorant" of L* by Hartman and

Wintner [4] when the following conditions hold: (i) (a,* — ai3) is

positive semidefinite and 5^0 in R; (ii) either 5>0 at some point or

(a*j — aij) is positive definite and c*9*0 at some point. The corollary

below follows immediately from Theorem 1.

Corollary. Suppose that L is a strict Sturmian majorant of L*. If

there exists a solution u of L*u = 0 in R such that u = 0 on B and u does

not vanish in any open set contained in R, then every solution of Lv = 0

vanishes at some point of R.

If the coefficients a*3 are of class C2,1(R) (i.e. all second derivatives

exist and are Lipschitzian), the hypothesis that u does not vanish in

any open set of R can be replaced by the condition that u does not

vanish identically in R because of Aronszajn's unique continuation

theorem [l].

In the case » = 2 considered by Protter [6], the condition 5 2:0

reduces to

(ffln<z22 — an) ( Y Di(bj* — bi) + c — c* )
(9) \ ,_i /

2 2

= aub2 — 2ai2bib2 + a22bi,

which is considerably simpler than Protter's condition. It reduces to

Protter's condition

2

Y B>ibf +c-c*^0
i-l

in the case that bi = b2 = 0, and also in the case that ai2 = a*2 = 0,

an = an, a22 = a22. (Two incorrect signs appear in [6]).

The following example in the case n = 2 illustrates that Theorem 1

is more general than the pointwise condition (9). Let R be the square

0<x1, x2<7T. Let L*, L be the elliptic operators defined by
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2 2
L*u = DiU Ar D2u + 2u,

2 2
Lv = Z)iz> + D2v + £>!» + ct,

where

c(x\ x2) = f(xl)f(x2) Ar 5/4,

and/£C[0, 71-] is not identically zero. The function w = sin x1 sin x2

is zero on B and satisfies L*u = 0. The condition F[m] >0 of Theorem

1 reduces to

/» 7r    /» ir

I    f(xx)f(x2) sin2 x1 sin2 x2 dx1dx2 > 0.
0    "^ o

Since this is fulfilled, every solution of Lv = 0 vanishes at some point

of R. This cannot be concluded from (9) or from Protter's result [6]

unless / has constant sign in R.

In the case n = 1, L is an ordinary differential operator of the form

Lu = (au')' + 2bu' + cu,

and R is an interval (xi, x2). We assert that R can be replaced by R

in the lemma and theorems; for v can have at most a simple zero at

the boundary points Xi and x2, and hence the first integral on the

right side of (5) exists and is nonnegative provided only that V9*0

inR.

Theorem 3. // there exists a nontrivial solution u of L*u = 0 in R

such that u = 0 on B and

(10)       J      \(a* - a)u'2 + \b*' - b' -\-c-c*-J w21 dx > 0,

then every solution of Lv = 0 has a zero in (xi, x2).

In the self-adjoint case b = b* = 0 it was shown by Clark and the

author [2] that the strict inequality in the hypothesis F[w]>0 of

Theorem 1, and therefore also in (10), can be replaced by 5;. Indeed,

this is transparent when the proof of the above lemma is specialized

to the self-adjoint case. With > replaced by ^, (10) reduces to

Leighton's condition in the self-adjoint case [5].
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g-ANALOGUES OF CAUCHY'S FORMULAS

WALEED A. AL-SALAM

1. Let q be a given number and let a be real or complex. The ath

"basic number" is defined by means of [a] = (1 — ga)/(l —q). This has

served as a basis for an extensive amount of literature in mathematics

under such titles as Heine, basic, or g-series and functions. The basic

numbers also occur naturally in many theta identities. The works of

Jackson (for bibliography see [2]) and Hahn [3] have stimulated

much interest in this field.

One important operation that is intimately connected with basic

series as well as with difference and other functional equations is the

g-derivative of a function /. This is defined by

f{qx) —f{x)
(i.i) mi*)-  ; \\ •x{q - 1)

Jackson defined the operations, which he called g-integration,

(1.2) f Xfit)d{q, t) = x(l -q)zZ qkf{xqk)
J 0 k—0

and

(1.3) f "fiOdiq, t) = x(l -q)JZ q~kfixq-k)
J x 4-0
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