ON THE GENERALISATION OF A FORMULA OF RAINVILLE

JYOTI CHAUDHURI

1. Introduction. Rainville [8] obtained a formula for $P_{n}(\operatorname{Cos} \alpha)$ where $P_{n}(x)$ is the Legendre polynomial. This was later generalised by Carlitz [5] who obtained a formula for $C_{n}^{\lambda+1 / 2}(\operatorname{Cos} \alpha)$, where $C_{n}^{\lambda}(x)$ is the Ultraspherical polynomial. Banerjee [1], Yadao [11] and Rangarajan [10] obtained similar formulae for the associated Legendre function $P_{n}^{m}(x)$.

The object of this short paper is to obtain a more general formula from which the above formulae follow as particular cases.
2. The generalised formula. Let $E(u)$ be the exponential function and let $G(u)$ possess a power series expansion (convergent or divergent)

$$
\begin{equation*}
G(u)=\sum_{n=0}^{\infty} g_{n} u^{n}, \quad g_{n} \neq 0 . \tag{2.1}
\end{equation*}
$$

Define the sequence of polynomials $F_{n}(x)$ by the generating relation (essentially the one used in Example 21, p. 186, of Rainville [9])

$$
\begin{equation*}
E(x t) G\left(\frac{1}{4} t^{2}\left(x^{2}-1\right)\right)=\sum_{n=0}^{\infty} \frac{F_{n}(x) t^{n}}{n!} . \tag{2.2}
\end{equation*}
$$

It follows, by multiplication of power series and equating coefficients of t^{n}, that

$$
\begin{equation*}
F_{n}(x)=\sum_{k=0}^{[n / 2]} \frac{n!g_{k} x^{n-2 k}\left(x^{2}-1\right)^{k}}{2^{2 k}(n-2 k)!} . \tag{2.3}
\end{equation*}
$$

The most useful special cases seem to occur when $G(u)$ is of hypergeometric form,

$$
G(u)={ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, \cdots, a_{p} ; \tag{2.4}\\
b_{1}, \cdots, b_{q} ;
\end{array}\right]
$$

which leads to the polynomial set

$$
F_{n}(x)=x_{p+2}^{n} F_{q}\left[\begin{array}{cc}
-n / 2,-(n-1) / 2, & a_{1}, \cdots, a_{p} ; \tag{2.5}\\
& \\
& \\
b_{1}, \cdots, b_{q} ; &
\end{array}\right] .
$$

Received by the editors July 27, 1965.

Putting $t=v\left(y^{2}-1\right)^{1 / 2}$ in (2.2) we get

$$
\begin{equation*}
E\left[v x\left(y^{2}-1\right)^{1 / 2}\right] G\left[\frac{1}{4} v^{2}\left(x^{2}-1\right)\left(y^{2}-1\right)\right]=\sum_{n=0}^{\infty} \frac{v^{n}\left(y^{2}-1\right)^{n / 2}}{n!} F_{n}(x) . \tag{2.6}
\end{equation*}
$$

Interchanging x and y,

$$
\begin{equation*}
E\left[v y\left(x^{2}-1\right)^{1 / 2}\right] G\left[\frac{1}{4} v^{2}\left(x^{2}-1\right)\left(y^{2}-1\right)\right]=\sum_{n=0}^{\infty} \frac{v^{n}\left(x^{2}-1\right)^{n / 2}}{n!} F_{n}(y) . \tag{2.7}
\end{equation*}
$$

Dividing (2.6) by (2.7) we have

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{v^{n}\left(y^{2}-1\right)^{n / 2}}{n!} F_{n}(x) \tag{2.8}\\
& =E\left\{v\left(x\left(y^{2}-1\right)^{1 / 2}-y\left(x^{2}-1\right)^{1 / 2}\right)\right\} \sum_{n=0}^{\infty} \frac{v^{n}\left(x^{2}-1\right)^{n / 2}}{n!} F_{n}(y) .
\end{align*}
$$

Now equating coefficients of v^{n} from both sides, we obtain

$$
\begin{equation*}
F_{n}(x)=\left(\frac{1-x^{2}}{1-y^{2}}\right)^{n / 2} \sum_{k=0}^{n}\binom{n}{k}\left[\frac{x\left(1-y^{2}\right)^{1 / 2}-y\left(1-x^{2}\right)^{1 / 2}}{\left(1-x^{2}\right)^{1 / 2}}\right]^{n-k} F_{k}(y) . \tag{2.9}
\end{equation*}
$$

This can also be written as

$$
\begin{equation*}
F_{n}(x)=\left(\frac{1-x^{2}}{1-y^{2}}\right)^{n / 2} \sum_{k=0}^{n}\binom{n}{k}\left[\frac{x\left(1-y^{2}\right)^{1 / 2}-y\left(1-x^{2}\right)^{1 / 2}}{\left(1-x^{2}\right)^{1 / 2}}\right]^{k} F_{n-k}(y) . \tag{2.10}
\end{equation*}
$$

Here $F_{n}(x)$ is expressed as the sum of a series of $F_{n}(y)$.
3. Special cases of the above formula. Putting $x=\cos \alpha, y=\cos \beta$ in (2.9) we get,

$$
\begin{equation*}
F_{n}(\cos \alpha)=\left(\frac{\sin \alpha}{\sin \beta}\right)^{n} \sum_{k=0}^{n}\binom{n}{k}\left[\frac{\sin (\beta-\alpha)}{\sin \alpha}\right]^{n-k} F_{k}(\cos \beta) . \tag{3.1}
\end{equation*}
$$

Putting $x=\sin \alpha, y=\cos \beta$ in (2.9) or changing α into $\pi / 2-\alpha$ in (3.1), (3.2) $F_{n}(\sin \alpha)=\left(\frac{\cos \alpha}{\sin \beta}\right)^{n} \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\left[\frac{\cos (\alpha+\beta)}{\cos \alpha}\right]^{n-k} F_{k}(\cos \beta)$.

Putting $\beta=2 \alpha$ in (3.1),

$$
\begin{equation*}
(2 \cos \alpha)^{n} F_{n}(\cos \alpha)=\sum_{k=0}^{n}\binom{n}{k} F_{k}(\cos 2 \alpha) . \tag{3.3}
\end{equation*}
$$

Putting $x=\sin \beta, y=-\cos \beta$ in (2.9) or changing α into $\pi / 2+\beta$ in (3.3) we get

$$
\begin{equation*}
\sin ^{n} \beta F_{n}(\sin \beta)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \cos ^{k} \beta F_{k}(\cos \beta) . \tag{3.4}
\end{equation*}
$$

Putting $y=-x$ in (2.9) we get

$$
\begin{equation*}
F_{n}(x)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(2 x)^{n-k} F_{k}(x) . \tag{3.5}
\end{equation*}
$$

Putting $x=\cosh \alpha, y=\cosh \beta$ in (2.9) or changing α into $i \alpha$ and β into $i \beta$ in (3.1), we get

$$
\begin{equation*}
F_{n}(\cosh \alpha)=\left(\frac{\sinh \alpha}{\sinh \beta}\right)^{n} \sum_{k=0}^{n}\binom{n}{k}\left[\frac{\sinh (\beta-\alpha)}{\sinh \alpha}\right]^{n-k} F_{k}(\cosh \beta) . \tag{3.6}
\end{equation*}
$$

Putting $x=\cos 2 \theta, y=\cos \theta$ in (2.9)

$$
\begin{equation*}
F_{n}(\cos 2 \theta)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}(2 \cos \theta)^{k} F_{k}(\cos \theta) . \tag{3.7}
\end{equation*}
$$

Putting $\cos \theta=x$ in (3.7)

$$
\begin{equation*}
F_{n}\left(1-2 x^{2}\right)=\sum_{k=0}^{n}(-1)^{k}\left(\frac{n}{k}\right)(2 x)^{k} F_{k}(x) . \tag{3.8}
\end{equation*}
$$

Changing x to $((1+x) / 2)^{1 / 2}$ and y to x, we get from (2.9)

$$
\begin{equation*}
2^{n / 2}(1+x)^{n / 2} F_{n}\left(\left(\frac{1+x}{2}\right)^{1 / 2}\right)=\sum_{k=0}^{n}\binom{n}{k} F_{k}(x) . \tag{3.9}
\end{equation*}
$$

Putting ($1-x t$) $/ \rho$ for x and $-x$ for y in (2.9), where $\rho=\left(1-2 x t+t^{2}\right)^{-1 / 2}$ we get

$$
\begin{equation*}
\rho^{n} F_{n}\left(\frac{1-x t}{\rho}\right)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} t^{k} F_{k}(x) \tag{3.10}
\end{equation*}
$$

Putting $(x-t) / \rho$ for x and x for y in (2.10), we have

$$
\begin{equation*}
\rho^{n} F_{n}\left(\frac{x-t}{\rho}\right)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} t^{k} F_{n-k}(x) . \tag{3.11}
\end{equation*}
$$

In this way by giving different values to x and y, we can obtain various relations of similar types.
4. Particular cases. Putting $p=0, q=1$ and $b_{1}=1$ in (2.5), we see that $F_{n}(x)$ becomes the Legendre polynomial $P_{n}(x)$. Hence the formula (8) of Rainville [8] and its special cases become particular cases of (3.1), (3.3), (3.4), (3.5) and the result (3.9) above now re-
duces to the result given by Bhonsle [2]. The results of Example 7 and Example 9, p. 184 of Rainville [9] follow easily from (3.4), (3.5), (3.8) and (3.10) respectively.

Putting $p=0, q=1, b_{1}=\lambda+\frac{1}{2}$ in (2.5) we find that $F_{n}(x)$ becomes

$$
\frac{n!}{(2 \lambda)_{n}} C_{n}^{\lambda}(x),
$$

where $C_{n}^{\lambda}(x)$ is the Ultraspherical polynomial defined by $\left(1-2 x t+t^{2}\right)^{-\lambda}$ $=\sum C_{n}^{\lambda}(x) t^{n}$. The relation (2.9) then transforms into

$$
\begin{align*}
C_{n}^{\lambda}(x) & =\left(\frac{1-x^{2}}{1-y^{2}}\right)^{n / 2} \tag{4.1}\\
& \cdot \sum_{k=0}^{n} \frac{(2 \lambda)_{n}}{(n-k)!(2 \lambda)_{k}}\left[\frac{x\left(1-y^{2}\right)^{1 / 2}-y\left(1-x^{2}\right)^{1 / 2}}{\left(1-x^{2}\right)^{1 / 2}}\right]^{n-k} C_{k}^{\lambda}(y) .
\end{align*}
$$

With the substitution $y=2 x^{2}-1$, (4.1) now reduces to the result (4.4) of Chatterjea [6]. The result given by Carlitz [5] is also a particular case of (4.1).

Denoting $\Phi_{n}(x)$ (as given by Rainville [8]) by the relation

$$
\begin{equation*}
\Phi_{n}(x)=\left(1-x^{2}\right)^{n / 2} P_{n}\left(\frac{1}{\left(1-x^{2}\right)^{1 / 2}}\right) \tag{4.2}
\end{equation*}
$$

(2.9) reduces to

$$
\begin{equation*}
y^{n} \Phi_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}(y-x)^{n-k} x^{k} \Phi_{k}(y) . \tag{4.3}
\end{equation*}
$$

The results given by Chatterjea [6], [7] now follow easily from (4.3).
Putting $p=0, q=1, b_{1}=m+1$ in (2.5), we obtain

$$
F_{n}(x)=\left(x^{2}-1\right)^{-m / 2} \frac{2^{m} m!n!}{(2 m)!(2 m+1)_{n}} P_{m+n}^{m}(x)
$$

and then (2.9) takes the form

$$
\begin{align*}
P_{m+n}^{m}(x) & =\left(\frac{1-x^{2}}{1-y^{2}}\right)^{(m+n) / 2} \tag{4.4}\\
& \cdot \sum_{k=0}^{n}\binom{2 m+n}{k}\left(\frac{x\left(1-y^{2}\right)^{1 / 2}-y\left(1-x^{2}\right)^{1 / 2}}{\left(1-x^{2}\right)^{1 / 2}}\right)^{k} P_{m+n-k}^{m}(y) .
\end{align*}
$$

The results (5), (6), (7) of Banerjee [1] and the result (2.3) of Rangarajan [10] now follow with proper substitutions from (4.4) as in §3.

From (3.10), putting $p=0, q=1, b_{1}=\alpha+1$, we get

$$
\begin{equation*}
\rho^{n} \frac{n!}{(1+\alpha)_{n}} P_{n}^{(\alpha, \alpha)}\left(\frac{1-x t}{\rho}\right)=\sum_{k=0}^{n} \frac{(-n)_{k} P_{k}^{(\alpha, \alpha)}(x) t^{k}}{(1+\alpha)_{k}} \tag{4.5}
\end{equation*}
$$

which has been obtained by Brafman [4] by a different method. Similarly from (3.11) we obtain

$$
\begin{equation*}
\rho^{n} C_{n}^{\nu}\left(\frac{x-t}{\rho}\right)=\sum_{k=0}^{n}(-1)^{k} \frac{t^{k}}{k!} \frac{\Gamma(n+2 \nu)}{\Gamma(n-k+2 \nu)} C_{n-k}^{\nu}(x) . \tag{4.6}
\end{equation*}
$$

Incidentally it may be mentioned that the result of Bloh [3]

$$
E(t z) I_{m}\left(t\left(z^{2}-1\right)^{1 / 2}\right)=\sum_{n=0}^{\infty} \frac{t^{m+n} P_{m+n}^{m}(z)}{(2 m+n)!}
$$

from which the results of Banerjee [1] were deduced, can be easily obtained from (2.2) with the substitutions $p=0, q=1, b_{1}=1+m$ and the definitions of $P_{m+n}^{m}(x)$ and $I_{m}(x)$.

In conclusion, I wish to express my gratitude to Professor B. N. Mukherjee for his kind help and guidance in preparation of this paper.

References

1. D. P. Banerjee, On some results involving associated Legendre's functions, Boll. Un. Mat. Ital. (3) 16 (1961), 218-220.
2. B. R. Bhonsle, On a series of Rainville involving Legendre polynomials, Proc. Amer. Math. Soc. 8 (1957), 10-14.
3. E. L. Bloh, On an expansion of Bessel functions in a series of Legendre functions, Prikl. Mat. Meh. 18 (1954), 745-748.
4. F. Brafman, Generating functions of Jacobi and related polynomials, Proc. Amer. Math. Soc. 2 (1951), 942-949.
5. L. Carlitz, Note on a formula of Rainville, Bull. Calcutta Math. Soc. 51 (1959), 132-133.
6. S. K. Chatterjea, On a series of Carlitz involving ultraspherical polynomials, Rend. Sem. Mat. Univ. Padova 31 (1961), 294-300.
7. -, Note on a formula of Carlitz, Rend. Sem. Mat. Univ. Padova 31 (1961), 243-248.
8. E. D. Rainville, Notes on Legendre polynomials, Bull. Amer. Math. Soc. 51 (1945), 268-271.
9. -_, Special functions, Macmillan, New York, 1960.
10. S. K. Rangarajan, On a new formula for $P_{m+n}^{m}(\cos \alpha)$, Quart. J. Math. 15 (1964), 31-34.
11. G. M. Yadao, A new formula for $P_{m+n}^{m}(\cos \alpha)$, Quart. J. Math. 13 (1962), 2930.

Jadavpur University
Calcutta, India

