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1. Introduction. Rainville [8] obtained a formula for P„(Cos a)

where Pn(x) is the Legendre polynomial. This was later generalised

by Carlitz [5] who obtained a formula for C£+1'2 (Cos a), where

C\(x) is the Ultraspherical polynomial. Banerjee [l], Yadao [ll] and

Rangarajan [10] obtained similar formulae for the associated

Legendre function P™(x).

The object of this short paper is to obtain a more general formula

from which the above formulae follow as particular cases.

2. The generalised formula. Let E(u) be the exponential function

and let G(u) possess a power series expansion (convergent or diver-

gent)
00

(2.1) G(u) = Ygnu\       gn9*0.
n-0

Define the sequence of polynomials Fn(x) by the generating relation

(essentially the one used in Example 21, p. 186, of Rainville [9])

(2.2) E(xt)G(\t2(x2 - 1)) = Y ^- ■
n-0        nl

It follows, by multiplication of power series and equating coefficients

of tn, that

t^wlftx"-24^2- 1)*

(2.3) Fn(x) = Y        ,    —r1- ■
£»      22k(n-2k)\

The most useful special cases seem to occur when G(u) is of hyper-

geometric form,

(2.4) G(«) = pFp1' " ' ' ^ u]
Lbi, ■ ■ ■ , bq;     J

which leads to the polynomial set

~-n/2, -(n- l)/2, ah ■ • ■ , ap;

x2 — 1
(2.5) Fn(x) = xnp+2Fq -—    .

x2

_ . oi, ■ ■ • , bq;
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Putting t=viy2-lY'2 in (2.2) we get

(2.6) E[vxiy2 - iyi*]G[iv*ix* - l)(j2 - 1)] = Z ""^ ~ ^"^ *.(*)•
n=o nl

Interchanging x and y,

(2.7) E[vyix2 - iy2]G[\v2ix2 - l)(y2 - 1)] = Z ""^ ~ ^"^ Fn(y).
n-0 «!

Dividing (2.6) by (2.7) we have

«     vn(y2 _  l)n/2

Z -;-Fnix)
n=0 W!

(2.8)
oo     vn(x2 _   ^n/2

= E{vixiy2 - iy'2 - yix2 - l)1'2)} Z —-r2— Fniy).
n=o n\

Now equating coefficients of vn from both sides, we obtain

This can also be written as

/1-xV2 » /»\ r*(l-y2)1/2-y(l-*2)1/2T

Here Fn(x) is expressed as the sum of a series of Fn(y).

3. Special cases of the above formula. Putting # = cos a, y = cos P

in (2.9) we get,

/sinoA"  "   /n\ Tsin (B — a)"]"-*
(3.1) Fn(cosa) = ( —)   Z( J   -T-A     Fkicosp).

\sin P/   i_0 \ k / L     sin a     J

Putting x = sin a, y = cos/3in (2.9) or changing a into x/2— a in (3.1),

/cosa\n  " / n \ ["cos (a + j8)"|n_*
(3.2) F„(sina)  = (—-)   Z (-Dfl-M  J   -7-       ^(cos ft).

\sm /S/   4_o \«/ L      cos a     J

Putting /3 = 2a in (3.1),

(3.3) (2 cos a)nF„(cos a) = Z (     ) ^*(cos 2«)-
*=o \ A /

Putting x = sin P, y= —cos /3 in (2.9) or changing a into x/2+/3 in

(3.3) we get
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(3.4) sin«0F„(sin0) = Y (-!)*( " ) cos*0Fi(cos0).
lc=0 \ k I

Putting y= — x in (2.9) we get

(3.5) Fn(x) = E (-1)* ( " ) (2*)»-*F*(*).

Putting x = cosh a, y = cosh 0 in (2.9) or changing a into ia and 0

into t'0 in (3.1), we get

(sinh a\n  "   / n \ Tsinh (0 — a)"!"-*
-t—^)  Z( J   -rr-"      ^(cosh«-
sinh 0/   i-o \ k / L      sinh a      J

Putting x = cos 2d, y = cos 6 in (2.9)

(3.7) Fn(cos 2d) = Y(~ 1)"~* ( " ) (2 cos 0)*F*( cos (9).
*-o \ k /

Putting cos 6 = x in (3.7)

(3.8) F»(l - 2x2) = 2 (-!)*(—) (2*)*F4f».

Changing x to ((l+x)/2)1/2 and y to x, we get from (2.9)

(3.9) 2»/2(l + xy'2Fn ((^~)n) =p0("k) Fk^-

Putting (1—x/)/pforxand — xforyin (2.9), wherep = (1 — 2x/+<2)-1'2

we get

(3.10) P«Fn (f—^) = p (~ D* ( * W(*)-

Putting (x — t)/p for x and x for y in (2.10), we have

(3.11) P"Fn (^—^) = E (-1)* ( * ) *»*U(*).

In this way by giving different values to x and y, we can obtain

various relations of similar types.

4. Particular cases. Putting p = 0, q=l and bi=l in (2.5), we see

that F„(x) becomes the Legendre polynomial Pn(x). Hence the

formula (8) of Rainville [8] and its special cases become particular

cases of (3.1), (3.3), (3.4), (3.5) and the result (3.9) above now re-
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duces to the result given by Bhonsle [2]. The results of Example 7

and Example 9, p. 184 of Rainville [9] follow easily from (3.4),

(3.5), (3.8) and (3.10) respectively.

Putting £ = 0, q — l, &i=X + J in (2.5) we find that Fnix) becomes

ra!       x
«:c-w'

where C„ix) is the Ultraspherical polynomial defined by (1 — 2xt+i2)_x

= zZCnix)t". The relation (2.9) then transforms into

x /l - x2\"'2

4i c^ = (r37)

-        (2X).        r*(i - yr12 - y(i - *2)1/2T-*cx

' ti in - *)I(2X)» L (1-s2)1'2 J       k(y)'

With the substitution y = 2x2 — 1, (4.1) now reduces to the result (4.4)

of Chatterjea [6]. The result given by Carlitz [5] is also a particular

case of (4.1).

Denoting <i>„(x) (as given by Rainville [8]) by the relation

(4.2) $nW = (1_^)n/2pn(__L__)

(2.9) reduces to

(4.3) y"*»(*) = Z ( " ) iv ~ *)B_*«**t(y).
k=o \ k /

The results given by Chatterjea [6], [7] now follow easily from (4.3).

Putting p = 0, g = l, bi = m + l in (2.5), we obtain

2mm \n! m
Fnix) =  ix2 - l)-'2 Pm+nix)

(2w)!(2w + l)n

and then (2.9) takes the form

»   , s      Z1 - »2\(m+n)/2

(4.4)

£l  *  A-o^2^-)Pm+n-k{y)-

The results (5), (6), (7) of Banerjee [l] and the result (2.3) of

Rangarajan [lO] now follow with proper substitutions from (4.4)

as in §3.
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From (3.10), putting £ = 0, q = l, bi = a-\-l, we get

n\ ia.a)/l-xC\       »    (-n)kPk'a) (x)f

(4-5)    pnirr-vK   I-) = £—?nr\—
(1 + a)n \     p     /       i-o (1 + a)k

which has been obtained by Brafman [4] by a different method.

Similarly from (3.11) we obtain

„   . (x - t\       " tk      T(n + 2v)

(4.6)      p CJ-) = Y (-1)'- w        ,     '      Cn_,(x).
V   p   /      t=o £! r(» — k A- 2v)

Incidentally it may be mentioned that the result of Bloh [3]

m+n    m

E(tz)im(t(z2-iyi2) = Y\/TZ
n=o   (2m + n) \

from which the results of Banerjee [l] were deduced, can be easily

obtained from (2.2) with the substitutions p = 0, q = l, &i = 1+jw and

the definitions of PJJJ+„(x) and Im(x).

In conclusion, I wish to express my gratitude to Professor B. N.

Mukherjee for his kind help and guidance in preparation of this paper.
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