IDEMPOTENTS IN GROUP RINGS

D. B. COLEMAN

The following result generalizes a corollary of a theorem due to Swan [1, p. 571]. Swan's theorem deals with Dedekind rings of characteristic 0.

THEOREM. Let R be an integral domain (with 1), and let G be a finite group of order n. Then the group ring RG has an idempotent different from 0 or 1 if and only if some prime divisor of n is a unit in R.

PROOF. Suppose that p is a prime dividing n, and that p is a unit in R. Let P be a subgroup of G of order p, and let $e = p^{-1} \sum_{x \in P} x$. Then e is a nontrivial idempotent.

Conversely, suppose that $e = \sum_{g \in G} \alpha_g g$ is a nontrivial idempotent in RG and that the characteristic of R is zero. Let $E = (e_{ij})$ be the matrix representing e under the regular representation. Then $e_{ii} = \alpha_1$ for $i = 1, \dots, n$, so the trace of E is $n\alpha_1 = q$, the multiplicity of 1 as an eigenvalue of E. Since $e \neq 0$, 1, we have that 0 < q < n. Let n_1 and q_1 be the relatively prime integers such that n_1 divides n, q_1 divides q, and $n_1\alpha_1 = q_1$. Let a and b be integers such that $an_1 + bq_1 = 1$; then $(a+b\alpha_1)n_1 = 1$, so that n_1 is a unit in R. Since q < n, we see that $n_1 \neq 1$. Any prime divisor of n_1 is a unit in R.

Next, let R have characteristic $p \neq 0$, and let $n = p^r t$, where (p, t) = 1 and $r \geq 0$.

It is well known that in the group algebra of a p-group over a field of characteristic p, every zero divisor is nilpotent. In particular, this is the case in KG if t=1, where K denotes the quotient field of R.

Suppose that RG has a nontrivial idempotent e. Then e is a non-nilpotent zero divisor in RG (hence in KG). Thus by the above, $t \neq 1$. Clearly t is a unit in R.

BIBLIOGRAPHY

1. R. G. Swan, Induced representations and projective modules, Ann. of Math. 71 (1960), 552-578.

VANDERBILT UNIVERSITY

Received by the editors March 14, 1966.

¹ The author is indebted to the referee for this reference.