THE MAXIMAL GCR IDEAL IN AN AW*-ALGEBRA

HERBERT HALPERN

1. Introduction. Kaplansky [3] introduced the notion of AW*-algebras to study algebraically certain properties of von Neumann algebras. Each AW*-algebra α can be written as the product of a discrete part αP and a continuous part $\alpha (1-P)$, where P is a projection in the center Z of α . The discrete part αP is characterized by the fact that each nonzero projection majorizes an abelian projection E, i.e. a nonzero projection such that $E\alpha E = ZE$; the continuous part $\alpha (1-P)$ contains no abelian projections at all.

In a C^* -algebra a two-sided closed ideal I is said to be a CCR ideal if and only if every irreducible representation Φ of the algebra on a Hilbert space H such that $\Phi(I) \neq (0)$ maps I onto the ideal of completely continuous operators on H [2]. An ideal I in the C^* -algebra is a GCR ideal if and only if there are ideals $(I_{\rho})_{0 \leq \rho \leq \alpha}$ (ρ an ordinal) in the algebra such that

- (1) $I_{\beta} < I_{\gamma}$ for $\beta < \gamma$;
- (2) Closure $[\bigcup \{I_{\rho} | \rho < \beta\}] = I_{\beta}$, if β is a limit ordinal;
- (3) $I_{\rho+1}/I_{\rho}$ is a CCR ideal in the algebra reduced mod I_{ρ} ; and
- (4) $I_0 = (0), I_{\alpha} = I.$

In every C^* -algebra there is a maximal GCR ideal I such that the algebra mod I contains no GCR ideals.

In an AW*-algebra α the maximal GCR ideal of α is contained in the discrete part of α . For this reason we consider only discrete (Type I) AW*-algebras. The *-subalgebra I_a of α generated by the abelian projections of α is an ideal in α [4]. In this paper we show that not only is I_a the maximal GCR in α but also that I_a is a CCR ideal and that α/J has no CCR ideals if J is an ideal containing I_a .

In a Type I AW*-algebra α , a nonzero projection P is said to be finite if it is equivalent to no proper subprojection. An AW*-algebra is finite if every nonzero projection is finite. A nonzero projection P in the center of α is said to be properly infinite if P is not finite and if P majorizes no proper finite projection in the center of α . In every Type I algebra α we may find a central projection P such that αP is a finite algebra and such that αP is a properly infinite projection. We characterize a finite Type I algebra in terms of the hull of the ideal of α in the strong structure space α in the strong structure

Received by the editors October 18, 1965.

sponds to the properly infinite projections. Finally we show that the structure space of I_a (i.e. the set of all primitive ideals of I_a taken with the hull-kernel topology) is Hausdorff.

2. The maximal GCR ideal in a Type I algebra. We shall make repeated use of the following lemma.

LEMMA. If I is a closed two-sided ideal in an AW*-algebra Q, then I is the closure of the *-subalgebra of Q generated by the projections in I.

THEOREM 1. If α is an AW*-algebra of Type I, the maximal GCR ideal in α is the closed *-subalgebra I_a of α generated by the abelian projections. This ideal is, in fact, a CCR ideal.

PROOF. We first show that the ideal I_a of abelian projections is a CCR ideal. Let Ψ be an irreducible representation of I_a on a Hilbert space H with kernel Q. There is an irreducible representation Φ of $\mathfrak C$ on H such that $\Phi \mid I_a = \Psi$. If Z is the center of $\mathfrak C$, there is a maximal ideal ζ in Z such that $Z \cap P = \zeta$ where P is the kernel of Φ . Let E be an abelian projection of $\mathfrak C$ such that $\Psi(E) \neq 0$. Since $E\mathfrak C E = Z E$, we have that $\Phi(E)\Phi(A)\Phi(E) = \alpha\Phi(E)$, (α , a scalar), for each A in $\mathfrak C$. If EAE = BE, $B \in Z$, $\alpha = \hat{B}(\zeta)$, where \hat{B} is the image of B under the Gelfand isomorphism. So $\Phi(E) = \Psi(E)$ is a one-dimensional projection on H. Because $\Psi(I_a)$ is irreducible on H and because $\Psi(I_a)$ is exactly the algebra of completely continuous operators on H. This completes the proof of the fact that I_a is a CCR ideal.

We now prove that I_a is the maximal GCR ideal by assuming that there is a GCR ideal J properly containing I_a and then obtaining a contradiction. We have that $K = J/I_a$ is a GCR ideal in \mathfrak{A}/I_a . There is a composition series $\{K_\rho | 0 \le \rho \le \beta\}$ of ideals in J/I_a . We may assume $K_1 \ne 0$. Let I be the complete inverse image of I under the canonical map \mathfrak{A} onto \mathfrak{A}/I_a ; we have K_1 is isomorphic to I/I_a and thus the ideal I has the property that I/I_a is a CCR ideal.

Let E be a projection in I but not in I_a . Since $E \times E$ is an AW*-algebra of Type I, we may find an orthogonal net $\{P_i\}$ of projections in the center of $\mathbb C$ such that each algebra $E \times E \cdot P_i$ is homogeneous. There is for each P_i a net $\{E_{ik}\}_k$ of orthogonal equivalent abelian projections such that $\sum_k E_{ik} = P_i E$. Assume first that there is an index i such that $P_i E \oplus I_a$. Then the number of abelian projections in the sum $\sum_k E_{ik}$ must be infinite. Now there is a representation Φ of $\mathbb C$ onto a Hilbert space with the following properties: (1) the kernel of Φ contains I_a ; (2) $\Phi(P_i E) \neq 0$; and (3) $\Phi(I)$ is the algebra of completely continuous operators on H. Since $\Phi(P_i E) \neq 0$ is a member of the

algebra of completely continuous operators, $\Phi(P_iE)$ is a finite dimensional projection on H; suppose dim $\Phi(P_iE) = n$. There are 2n equipotent disjoint sets S_1, S_2, \cdots, S_{2n} of the indexing set of the k's in $\{E_{ik}\}_k$ whose union is the indexing set. Then if $E_j = \sum \{E_{ik} | k \in S_j\}$ $(1 \le j \le 2n)$ we have that E_1, E_2, \cdots, E_{2n} is a set of orthogonal equivalent projections of sum EP_i . Thus, $\Phi(EP_i)$ is the sum of 2n nonzero orthogonal projections. This is a contradiction. Hence for each i we have that EP_i lies in I_a .

We now prove that each EP_i is the sum of a finite number n(i) of orthogonal equivalent abelian projections $\{E_{ik}\}_k$. Indeed, let ζ be a maximal ideal in the center Z of α such that EP_i does not lie in the two-sided ideal $[\zeta]$ given by

$$[\zeta] = \text{closure } \left\{ \sum_{j=1}^{n} A_{j} B_{j} \mid A_{j} \in \Omega, B_{j} \in \zeta, \right.$$
for all $j = 1, \dots, n$ and for all $n = 1, 2, \dots \}.$

There is a Hilbert space $H(\zeta)$ and a representation Ψ_{ζ} of \mathfrak{A} on $H(\zeta)$ such that the kernel of Ψ_{ζ} is equal to $[\zeta]$ and such that $\Psi_{\zeta}(I_a)$ is the ideal of completely continuous operators on $H(\zeta)$. The nonzero projection $\Psi_{\zeta}(P_iE)$ has finite dimension n. If the indexing set S of the k's in $\{E_{ik}\}_k$ were infinite, then we could write $S = \bigcup \{S_j \mid 1 \leq j \leq 2n\}$ where S_1, S_2, \cdots, S_{2n} are equipotent disjoint subsets of S. If we set $E_j = \sum \{E_k \mid K \in \ddot{S}_j\}$ $(1 \leq j \leq 2n)$, the projections E_1, E_2, \cdots, E_{2n} are orthogonal and equivalent with sum EP_i . Since each $\Psi_{\zeta}(E_j) \neq 0$, the projection $\Psi_{\zeta}(P_iE)$ has dimension greater than n. This is a contradiction. So the number n(i) of k in the indexing set is finite. If E_1, E_2, \cdots, E_m and F_1, F_2, \cdots, F_n are two sets of equivalent orthogonal abelian projections such that

$$\sum \{E_j \mid 1 \leq j \leq m\} = \sum \{F_j \mid 1 \leq j \leq n\},\,$$

we have m = n; thus, the number n(i) is unique.

For each integer n we let $S(n) = \{i \mid n(i) = n\}$. We show that for each integer N there is an integer n > N such that S(n) is nonvoid. If, on the contrary, S(n) is void for n > N, we have that E is a member of I_a . Indeed, $E = F_1 + F_2 + \cdots + F_N$, where the nonzero F_k are orthogonal abelian projections given by $F_k = \sum_i E_{ik}$ $(1 \le k \le N)$. Each nonzero F_k is abelian because it is the sum of disjoint abelian projections. So for each integer N there is an integer n > N such that S(n) is nonvoid.

We shall obtain a contradiction now by showing that for each positive integer m there are m orthogonal equivalent projections E_1, E_2, \dots, E_m such that $E \ge E_1 + E_2 + \dots + E_m$ and

 $E-(E_1+E_2+\cdots+E_m)\in I_a$. This shows that under any representation Φ of Ω on a Hilbert space such that the kernel of Φ contains I_a it is impossible for $\Phi(E)$ to be a completely continuous operator. Thus, I/I_a is not a CCR ideal in Ω/I_a . For each n such that S(n) is nonempty we define the projections

$$G_{nk} = \sum \{E_{ik} \mid i \in S(n)\}, \qquad (1 \leq k \leq n).$$

Since G_{n1} , G_{r2} , \cdots , G_{nn} are the sums of orthogonal equivalent projections, we have that the G_{n1} , G_{n2} , \cdots , G_{nn} are orthogonal and equivalent. Also each G_{nk} is the sum of disjoint abelian projections; thus, each G_{nk} is abelian. For each n let n=r(n)m+j(n), where $0 \le j(n) < m$. Let

$$F_{nj} = \sum \{G_{nl} \mid (j-1)r(n) + j(n) + 1 \le l \le jr(n) + j(n)\}, \ (1 \le j \le m).$$

We have that F_{n1} , F_{n2} , \cdots , F_{nm} are mutually orthogonal equivalent projections provided $n \ge m$. For n < m define $F_{nj} = 0$ $(1 \le j \le m)$. Since S(n) is nonvoid for some $n \ge m$, we have that there is an integer n with $F_{n1} \ne 0$. We now remark that G_{nk} and G_{pj} are disjoint for $n \ne p$. Indeed, let $P_n = \sum \{P_i | i \in S(n)\}$ and $P_p = \sum \{P_i | i \in S(p)\}$. Since $S(n) \cap S(p)$ is void, the projections P_n and P_p are orthogonal. However, $P_n \ge G_{nk}$ and $P_p \ge G_{pj}$; this gives the desired result.

Now we let F_1, F_2, \dots, F_{m-1} be projections given by

$$F_j = \sum \{ \delta_{nj} G_{nj} \mid 1 \leq n < \infty \}, \qquad (1 \leq j \leq m-1),$$

where $\delta_{nj} = 1$ if $j \le j(n)$ and $\delta_{nj} = 0$ if j(n) < j. The F_j being the sum of disjoint abelian projections is abelian. We let

$$E_k = \sum \{F_{nk} \mid 1 \leq n < \infty\}, \qquad (1 \leq k \leq m).$$

The projections E_1, E_2, \dots, E_m are mutually orthogonal equivalent nonzero projections. We have

$$E = F_1 + F_2 + \cdots + F_{m-1} + E_1 + E_2 + \cdots + E_m$$
 as desired. Q.E.D.

THEOREM 2. Let α be an AW*-algebra of Type I and let I_a be the *-subalgebra of α generated by the abelian projections of α . If I is an ideal in α such that $I \supset I_a$, then α/I has no CCR ideals.

PROOF. Let us assume that J is an ideal in α such that $J \supset I$ and J/I is a CCR ideal. We shall obtain a contradiction. Let E be a projection in J but not in I. Since $E \alpha E$ is a Type I AW*-algebra, there is a net $\{P_i\}$ of orthogonal projections in the center of α such that (1) $\sum_i E P_i = E$ and (2) $E \alpha E \cdot P_i$ is homogeneous for each i. For each

i let $\{E_{ik} | k \in T(i)\}$ be an orthogonal equivalent set of abelian projections of least upper bound EP_i .

There is an irreducible representation Φ of α on a Hilbert space H such that (1) the kernel K of Φ contains I; (2) $\Phi(J)$ is the algebra of completely continuous operators on H; and (3) $\Phi(E) \neq 0$. We shall show that for any positive integer m there are orthogonal equivalent projections E_1, E_2, \dots, E_m such that $E \geq E_1 + E_2 + \dots + E_m$ and $E - (E_1 + E_2 + \dots + E_m) \in K$. This will produce a contradiction to the fact that $\Phi(E)$ is a finite dimensional projection on H. Thus, the algebra α/I will have no CCR ideals.

First assume that there is an index i such that $EP_i \not \in K$; then the set T(i) is infinite because otherwise $EP_i \in I_a \subset K$. By the method of Theorem 1, for any positive integer m we would be able to write $E_1 + E_2 + \cdots + E_m = EP_i$ where E_1, E_2, \cdots, E_m are orthogonal equivalent projections. Since $\Phi(EP_i) \neq 0$ is a completely continuous operator on H, we would have a contradiction. Therefore, for each i we have $EP_i \in K$.

Now let |T(i)| denote the cardinality of the set T(i). For each positive integer n there is a set T(i) whose cardinality exceeds n, otherwise $E \in I_a$. Let $S_1 = \{i \mid |T(i)| < \infty\}$ and $S_2 = \{i \mid |T(i)| \text{ is not finite}\}$ we write, as in Theorem 1,

$$E'_1 + E'_2 + \cdots + E'_m + E'_{m+1} = \sum \{EP_i | i \in S_1\},\$$

where E_1' , E_2' , \cdots , E_{m+1}' are mutually orthogonal projections such that $E_1' \sim E_2' \sim \cdots \sim E_m'$ and $E_{m+1}' \subset I_a$. We do not know in this case whether or not any of the E_k' are nonzero. For each i in S_2 we may write $T(i) = \bigcup \{ T(i, j) \mid 1 \leq j \leq m \}$, where T(i, j) $(1 \leq j \leq m)$ are disjoint equipotent subsets of T(i). We let

$$F_{ij} = \sum \{E_{i\rho} | \rho \in T(i,j)\}, \text{ for } (1 \leq j \leq m).$$

Then F_{i1} , F_{i2} , \cdots , F_{im} are mutually orthogonal equivalent projections. Let

$$E_i'' = \sum \{F_{ii} \mid i \in S_2\}, \qquad (1 \leq j \leq m).$$

The projections E_1'' , E_2'' , \cdots , E_m'' are mutually orthogonal and equivalent. For each j and k such that $1 \le j$, $k \le m$, we have that E_j' is orthogonal to E_k'' . Thus, if we set $E_j = E_j' + E_j''$ $(1 \le j \le m)$, we have that E_1, E_2, \cdots, E_m are orthogonal equivalent projections such that $E \ge E_1 + E_2 + \cdots + E_m$ and such that $E - (E_1 + E_2 + \cdots + E_m) = E_{m+1}' \in I_a$. This completes the proof of Theorem 2.

3. Structure space of Type I algebras. Let α be an AW*-algebra and let $\mathbb Z$ be the center of α ; let $M(\alpha)$ be the set of all maximal ideals of α and let Z be the set of all maximal ideals of $\mathbb Z$, i.e. the spectrum of $\mathbb Z$. The set $M(\alpha)$ is given the hull-kernel topology and the set Z is given the w^* -topology when Z is identified with the set of all nonzero complex-valued homomorphism of $\mathbb Z$. There is a homeomorphism of $M(\alpha)$ onto Z given by $M \rightarrow M \cap \mathbb Z \{M \in M(\alpha)\}$. If $M \cap \mathbb Z = \zeta \in \mathbb Z$ where $M \in M(\alpha)$ we let $M = M(\zeta)$. Now if A is an element of $\mathbb Z$, let \widehat{A} be the image of A under the Gelfand map in the algebra of all continuous complex-valued functions on Z. If Q is a projection in $\mathbb Z$, the set $\alpha Q = I$ is a closed two-sided ideal in α . If h(I), the hull of I, is the set $h(I) = \{M \in M(\alpha) \mid \widehat{M} \supset I\}$, we have that $M(\alpha) - h(I) = \{M(\zeta) \in M(\alpha) \mid \widehat{Q}(\zeta) = 1\}$; we also have that $M \cap I = MQ$ for all M in $M(\alpha) - h(I)$.

THEOREM 3. Let α be an AW*-algebra of Type I and let I_a be the *-subalgebra of α generated by the abelian projections. Then α is finite if and only if $h(I_a)$ is nowhere dense in $M(\alpha)$.

PROOF. Let α be finite. Fred B. Wright [6] has proved that the algebras α/M $\{M \in M(\alpha)\}$ are finite Type I AW*-algebras except possibly on a nowhere dense set $N \subset M(\alpha)$. The set N is void if and only if the number of homogeneous summands of α is finite. If N is nonvoid, then $M \in N$ if and only if α/M is an AW*-factor of Type II₁. We immediately see that $h(I_a) = N$ and thus that $h(I_a)$ is nowhere dense in α .

Now assume that α is not finite. We shall show that $h(I_a)$ contains a nonvoid open set. Let $\{P_i\}$ be a net of orthogonal projections in Zsuch that $\sum_{i} P_{i}$ is the identity operator and such that αP_{i} is homogeneous for each i. We may write $\sum_{i} E_{ik} = P_i$ where $\{E_{ik}\}_k$ is a net of orthogonal equivalent abelian projections of a. Since a is not finite. there is a P_i such that the cardinality of the set of $\{E_{ik}\}_k$ is not finite. Let $P_i = Q$. We have that $h(\alpha Q) \neq M(\alpha)$ since Q is not the zero projection. We shall prove the nonempty open set $M(\alpha) - h(\alpha Q)$ is contained in $h(I_a)$. If $M \in M(\alpha) - h(\alpha Q)$, we have $M = M(\zeta)$ for some ζ such that $\hat{Q}(\zeta) = 1$. There is a representation Ψ of α onto a Hilbert space H such that the kernel $[\zeta]$ of Ψ is the closure of $\{\sum_{k} \{A_k B_k | A_k \in \alpha, \}\}$ $B_k \in \zeta$ $(1 \le k \le n)$ $n = 1, 2, \cdots$ and such that $\Psi(I_a)$ is the algebra of completely continuous operators on H. Using the representation Ψ , we prove the closed two-sided ideal J generated by I_a and $[\zeta]$ is proper in α . On the contrary, if J contained the identity of α , there is an element A in I_a and an element B in $[\zeta]$ such that ||A+B-1||< 1. This means that A+B has an inverse in α and hence that

 $\Psi(A+B)=\Psi(A)$ has an inverse in $\Psi(\mathfrak{A})$. However, $\Psi(A)$ is a completely continuous operator and $\Psi(A)$ will have no inverse if H is infinite dimensional. For any integer n>0 we may write Q as the sum of n orthogonal equivalent projections since Q is the sum of an infinite set of orthogonal equivalent abelian projections. For the integer n>0 the dimension of H is not less than n because $\Psi(Q)\neq 0$. So the dimension of H is infinite. We are forced to conclude that H is a proper ideal. This means H is contained in a maximal ideal. Since there is one and only one maximal ideal containing $[\zeta]$, we have $H \subseteq M(\zeta)$ and so $H \subseteq M(\zeta)$. This completes the proof.

The next theorem characterizes the interior of $h(I_a)$ in terms of the properly infinite central projections.

THEOREM. Let α be an AW*-algebra of Type I with center Z. A projection P in Z is properly infinite if and only if $M(\alpha) - h(\alpha P) \subset h(I_a)$. In particular, the identity 1 is properly infinite if and only if $M(\alpha) = h(I_a)$.

PROOF. Let P be a properly infinite central projection and let $M = M(\zeta) \in M(\alpha) - h(\alpha P)$. We obtain a contradiction by assuming that $M \supset I_a$. Let $\{P_i\}$ be a net of orthogonal central projections with least upper bound P such that for each i the algebra aP_i is homogeneous. For each i let $\{E_{ik} | k \in T(i)\}$ be a net of orthogonal equivalent abelian projections of least upper bound P_i . Since each P_i is properly infinite, each indexing set T(i) is infinite for the sum of a finite number of orthogonal abelian projections is finite. For each positive integer n and for each i the projection P_i may be written as the sum of *n* orthogonal equivalent projections F_{i1}, \dots, F_{in} . If F_k $=\sum_{i} F_{ik}$ $(1 \le k \le n)$, P is the sum of n equivalent orthogonal projections F_1, F_2, \cdots, F_n . Now let Ψ be an irreducible representation of α on a Hilbert space H such that the kernel of Ψ is M. The projection P is not in M since $\hat{P}(\zeta) = 1$. Because for each positive integer n, P may be written as the sum of n equivalent orthogonal projections His not finite dimensional. The ideal generated by $[\zeta]$ and I_a is not proper since $M \supset I_a$. So there is an A in I_a such that 1-A is a member of $[\zeta]$. Thus, $\Psi(A)$ is the identity operator on H. However $\Psi(I_a)$ is the set of all completely continuous operators on the infinite dimensional space H. We have now reached a contradiction.

Conversely, we suppose that P is a central projection such that $M(\alpha) - h(\alpha P) \subset h(I_a)$. There is no loss of generality if we assume αP is homogeneous. Indeed, there is a net $\{P_i\}$ of orthogonal central projections such that for each i the algebra αP_i is homogeneous. It is sufficient to show that each P_i is properly infinite. We have

 $M(\alpha)-h(\alpha P_i)=\big\{M(\zeta)\in M(\alpha)\big|\ \hat{P}_i(\zeta)=1\big\}\subset \big\{M(\zeta)\in M(\alpha)\big|\ \hat{P}(\zeta)=1\big\}$ = $M(\alpha)-h(\alpha P)$. So we can assume that αP is a homogeneous algebra. There is a net $\big\{E_i\big|\ i\in S\big\}$ of orthogonal equivalent abelian projections of least upper bound P. If S is a finite set, then $P\in I_a$. But in this case every M in $M(\alpha)-h(\alpha P)$ would contain 1 since $1-P\in M$ and since $P\in I_a\subset M$. So the indexing set S in not finite and P is properly infinite.

COROLLARY. If X is an open set in $h(I_a)$ and if $M \in X$, there is a properly infinite projection P such that $M \in M(\mathfrak{A}) - h(\mathfrak{A}P) \subset X$.

PROOF. Since the spectrum Z of Z is a Stonean space, there is an open-closed set Y such that $M \subseteq Y \subset X$. If P is the projection in Z such that $Y = \{\zeta \subseteq Z \mid \hat{P}(\zeta) = 1\}$ we have $M \subseteq M(\alpha) - h(\alpha P) \subset X \subset h(I_a)$. So P is a properly infinite projection.

Now that we have an explicit representation for the maximal GCR ideal of a Type I AW*-algebra, we can easily show the structure space (i.e. the set of all primitive ideals with the hull-kernel topology) of this ideal is Hausdorff.

Let α be a C^* -algebra and I be an (closed two-sided) ideal of α ; for each A in α we denote the image of A under the canonical map of α onto α/I by A(I). The algebra α/I is a C^* -algebra under the norm $||A(I)|| = \text{glb}\{||A+K|||K \in I\}$. We make use of the following lemma.

LEMMA. Let α be a C^* -algebra; let I and J be ideals of α ; and let $A \in I$. Then $||A(J)|| = ||A(I \cap J)||$.

THEOREM. The maximal GCR ideal of a Type I AW*-algebra a has a Hausdorff structure space.

PROOF. Let $P(I_a) = P_a$ be the structure space of I_a taken with the hull-kernel topology. The space P_a is Hausdorff if and only if for each fixed A in I_a the function $f_A = f$ on P_a given by f(I) = ||A(I)|| is continuous. Let $\rho > 0$ and A in I_a be given; it is known that the set $\{I \in P_a \mid f(I) \le \rho\}$ is closed. It is sufficient to show that the set $\{I \in P_a \mid f(I) < \rho\}$ is open in order to show f is continuous on P_a .

Let J be an ideal in P_a such that $f(J) < \rho$. There is a primitive ideal J_1 in \mathfrak{A} such that $J_1 \cap I_a = J$. There is a ζ in the spectrum Z of the center Z of \mathfrak{A} such that $J_1 \cap [\zeta]$. Thus $J \cap [\zeta] \cap I_a$. There is a representation Ψ of I_a on a Hilbert space H such that (1) the kernel of Ψ is $[\zeta] \cap I_a$ and (2) such that $\Psi(I_a)$ is the set C(H) of completely continuous operators on H. We have that either $\Psi(J) = C(H)$ or that $\Psi(J) = (0)$ because C(H) has no proper ideals. In the first instance $I_a/([\zeta] \cap I_a) = J/([\zeta] \cap I_a)$ or equivalently that $I_a = J$. This is impossible. So we have that $J = I_a \cap [\zeta]$.

914 H. HALPERN

For each $B \in \alpha$ the function $\zeta' \to \|B([\zeta'])\|$ ($\zeta' \in Z$) is upper semicontinuous. So there is an open and closed set X in Z such that $\zeta \in X \subset \{\zeta' \in Z \mid \|A([\zeta'])\| < \rho\}$ since $\|A([\zeta])\| = f(J) < \rho$. There is a central projection P in α such that $X = \{\zeta' \in Z \mid \hat{P}(\zeta') = 1\}$ the set $P_a - h(I_a P)$ is open in P_a . If $I \in P_a - h(I_a P)$ and $I = [\zeta'] \cap I_a$ for some $\zeta' \in Z$, we have $[\zeta'] \cap I_a \supset I_a P$. Since $[\zeta'] \cap I_a \supset [\zeta'] \cdot I_a$ we have $\hat{P}(\zeta') = 1$. Thus, if $I \in P_a - h(I_a P)$, we have $\|A(I)\| = \|A(I_a \cap [\zeta'])\| = \|A([\zeta'])\| < \rho$. Also we have that $\hat{P}(\zeta) = 1$. If $J \supset I_a P$ then for each B in $I_a \|B(J)\| = \|B(I_a \cap [\zeta])\| = \|BP([\zeta])\| = 0$. Thus, $J = I_a$. We conclude that $J \supset I_a P$ so $J \in P_a - h(I_a P)$. This completes the proof.

BIBLIOGRAPHY

- 1. J. Glimm, Type I C*-algebras, Ann. of Math. (2) 73 (1961), 572-612.
- 2. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
 - 3. ——, Projections in Banach algebras, Ann. of Math. (2) 53 (1951), 235-249.
 - 4. ——, Algebras of type I, Ann. of Math. (2) 56 (1952), 460-472.
- 5. C. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J.,
- 6. F. B. Wright, A reduction for algebras of finite type, Ann. of Math. (2) 60 (1954), 560-570.

ILLINOIS INSTITUTE OF TECHNOLOGY