THE MAXIMAL GCR IDEAL IN AN AW*-ALGEBRA
HERBERT HALPERN

1. Introduction. Kaplansky [3] introduced the notion of AW*-
algebras to study algebraically certain properties of von Neumann
algebras. Each AW*-algebra @ can be written as the product of a
discrete part @P and a continuous part @(1 —P), where P is a projec-
tion in the center Z of @. The discrete part QP is characterized by
the fact that each nonzero projection majorizes an abelian projection
E, i.e. a nonzero projection such that EQE = ZE; the continuous part
@(1—P) contains no abelian projections at all.

In a C*-algebra a two-sided closed ideal I is said to be a CCR ideal
if and only if every irreducible representation ® of the algebra on a
Hilbert space H such that ®(I)(0) maps I onto the ideal of com-
pletely continuous operators on H [2]. An ideal I in the C*-algebra
is a GCR ideal if and only if there are ideals (I,)o5,54« (0 an ordinal)
in the algebra such that

(1) Ig<I, for B<¥;

(2) Closure [U{I,|p<B}]=1s, if B is a limit ordinal;

(3) I,41/1,is a CCR ideal in the algebra reduced mod I,; and

(4) Io=(0), I,=1.

In every C*-algebra there is a maximal GCR ideal I such that the
algebra mod I contains no GCR ideals.

In an AW*-algebra @ the maximal GCR ideal of @ is contained
in the discrete part of @. For this reason we consider only discrete
(Type I) AW*-algebras. The *-subalgebra I, of @ generated by the
abelian projections of @ is an ideal in @ [4]. In this paper we show
that not only is I, the maximal GCR in @ but also that I, is a CCR
ideal and that @/J has no CCR ideals if J is an ideal containing I,.

In a Type I AW*-algebra @, a nonzero projection P is said to be
finite if it is equivalent to no proper subprojection. An AW*-algebra
is finite if every nonzero projection is finite. A nonzero projection P
in the center of @ is said to be properly infinite if P is not finite and
if P majorizes no proper finite projection in the center of @. In every
Type I algebra @ we may find a central projection P such that GP is
a finite algebra and such that 1—P is a properly infinite projection.
We characterize a finite Type I algebra in terms of the hull of the
ideal of I, in the strong structure space M (@) of maximal ideals of
@. For part of this characterization we use a theorem of Fred B.
Wright [6]. We also show that the interior of the hull of I, corre-
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sponds to the properly infinite projections. Finally we show that the
structure space of I, (i.e. the set of all primitive ideals of I, taken with
the hull-kernel topology) is Hausdorff.

2. The maximal GCR idealin a Type I algebra. We shall make re-
peated use of the following lemma.

LeMMA. If I is a closed two-sided ideal in an AW*-algebra @, then
I is the closure of the x-subalgebra of @ generated by the projections in I.

TrHEOREM 1. If @ is an AW*-algebra of Type 1, the maximal GCR
ideal in Q 1is the closed *-subalgebra I, of G generated by the abelian
projections. This ideal is, in fact, a CCR ideal.

Proor. We first show that the ideal I, of abelian projections is a
CCR ideal. Let ¥ be an irreducible representation of I, on a Hilbert
space H with kernel Q. There is an irreducible representation ® of @
on H such that ®|I,=¥. If Z is the center of @, there is a maximal
ideal { in Z such that ZNP ={ where P is the kernel of ®. Let E be
an abelian projection of @ such that W(E) 0. Since EQE =ZE, we
have that ®(E)®(4)P(E) =aP(E), («, a scalar), for each 4 in Q. If
EAE=BE, BEZ, a= B(}), where B is the image of B under the
Gelfand isomorphism. So ®(E) =¥(E) is a one-dimensional projec-
tion on H. Because ¥(/,) is irreducible on H and because ¥(I,) is
generated by one-dimensional projections, the %-algebra ¥(I,) is
exactly the algebra of completely continuous operators on H. This
completes the proof of the fact that I, is a CCR ideal.

We now prove that I, is the maximal GCR ideal by assuming that
there is a GCR ideal J properly containing I, and then obtaining a
contradiction. We have that K=J/1, is a GCR ideal in @/I,. There
is a composition series { K,|0<p=<p} of ideals in J/I,. We may as-
sume K;#0. Let I be the complete inverse image of I under the
canonical map @ onto @/I,; we have K, is isomorphic to I/I, and
thus the ideal I has the property that I/I, is a CCR ideal.

Let E be a projection in I but not in I,. Since EQGE is an AW*-
algebra of Type I, we may find an orthogonal net { P.-} of projections
in the center of @ such that each algebra EQE-P; is homogeneous.
There is for each P; a net {E}x of orthogonal equivalent abelian
projections such that ) ,E; = P;E. Assume first that there is an index
i such that P;E€ I,. Then the number of abelian projections in the
sum Y +E; must be infinite. Now there is a representation ® of @
onto a Hilbert space with the following properties: (1) the kernel of
® contains I4; (2) $(P;E) #0; and (3) ®(J) is the algebra of completely
continuous operators on H. Since ®(P;E)>0 is a member of the
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algebra of completely continuous operators, ®(P;E) is a finite dimen-
sional projection on H; suppose dim ®(P;E) =n. There are 2n equi-

potent disjoint sets Sy, Sy, - - -, Ss. of the indexing set of the k’s in
{Eik}k whose union is the indexing set. Then if E,~=E{E.»k| kESj}
(1=j=2n) we have that E,, E,, - - -, E,, is a set of orthogonal

equivalent projections of sum EP; Thus, ®(EP;) is the sum of 2n
nonzero orthogonal projections. This is a contradiction. Hence for
each 7 we have that EP, lies in I,.

We now prove that each EP; is the sum of a finite number 7(z)
of orthogonal equivalent abelian projections {E.-k}k‘ Indeed, let ¢ be
a maximal ideal in the center Z of @ such that EP; does not lie in
the two-sided ideal [{] given by

[¢] = closure { >°;.14,;B;| A; € @, B, € ¢,
forallj=1,--. ,nandforalle =1,2, - - - }

There is a Hilbert space H({) and a representation ¥; of @ on H({)
such that the kernel of ¥; is equal to [{] and such that ¥;(I,) is the
ideal of completely continuous operators on H({). The nonzero pro-
jection W¢(P;E) has finite dimension #. If the indexing set S of the
E'sin {Ea}. were infinite, then we could write S=U{S;|1<j<2n}
where S1, Sz, ¢ - -, Sa, are equipotent disjoint subsets of S. If we set
Ej=E{Ele€$j} (1 =j=2n), the projections E,, E, - - -, E,, are
orthogonal and equivalent with sum EP,. Since each ¥;(E;) #0, the
projection ¥;(P;E) has dimension greater than #n. This is a contra-
diction. So the number #(3) of k in the indexing set is finite. If
E, E;, ---, E, and Fy, Fo, - - -, F, are two sets of equivalent
orthogonal abelian projections such that

2HE|1=jsml = Z{F|1=5 =,

we have m =#; thus, the number #(?) is unique.

For each integer n we let S(n)={i|n(i)=n}. We show that for
each integer N there is an integer #> N such that S(#) is nonvoid. If,
on the contrary, S(z) is void for > N, we have that E is a member
of I,. Indeed, E=F,+F.+ - - - +Fy, where the nonzero F) are
orthogonal abelian projections given by F,= > iEs« (1<E=ZN). Each
nonzero Fj is abelian because it is the sum of disjoint abelian projec-
tions. So for each integer NV there is an integer > N such that S(n)
is nonvoid.

We shall obtain a contradiction now by showing that for each
positive integer m there are m orthogonal equivalent projections
E, Ey---, E, such that EzZE,+ E;+ -+ Es and
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E—(Ey+E;+ - - - +En)EIL. This shows that under any represen-
tation ® of @ on a Hilbert space such that the kernel of ® contains
I, it is impossible for ®(E) to be a completely continuous operator.
Thus, I/I, is not a CCR ideal in @/I,. For each n such that S(n) is
nonempty we define the projections

G =2 {Ea|li€ESM)}, (A =<k=n).

Since Ga1, Gre, * - -, Gan are the sums of orthogonal equivalent pro-
jections, we have that the Gni, Gus, * - -, Gas are orthogonal and
equivalent. Also each G, is the sum of disjoint abelian projections;
thus, each G, is abelian. For each # let n=r(n)m-+j(n), where
0=j(n) <m. Let

Faj = 2 {Gut| (G = Dr(n) +j(0) + 1 S 1< jr(n) +j(m)}, (1 S5 < m).

We have that Fn, Fpe, - -+, Fum are mutually orthogonal equivalent
projections provided # =m. For n <m define F,;=0 (1 <j=<m). Since
S(n) is nonvoid for some n=m, we have that there is an integer n
with Fp15%0. We now remark that G, and G,; are disjoint for np.
Indeed, let P,=) {P;|i€S(n)} and P,=D {P:iES(p)}. Since
S(m)NS(p) is void, the projections P, and P, are orthogonal. How-
ever, P, =G, and P,=G,;; this gives the desired result.

Now we let Fi, Fs, - - -, F,_; be projections given by

Fi=2{oaiGujl1sn<w}, (A=jsm—1),

where 6,;=1 if j <j(n) and 8,;=0 if j(n) <j. The F; being the sum of
disjoint abelian projections is abelian. We let

Ek=Z{Fnk\1§”<°°}y A=k=m).

The projections Ei, E,, + - -, E,, are mutually orthogonal equivalent
nonzero projections. We have

E=F,+Fy+ -+ Fna+ E+E+ - -+ En
as desired. Q.E.D.

THEOREM 2. Let @ be an AW*-algebra of Type 1 and let I, be the
x-subalgebra of G generated by the abelian projections of Q. If I is an
ideal in @ such that I D1,, then @/I has no CCR ideals.

ProOF. Let us assume that J is an ideal in @ such that JOI and
J/Iis a CCR ideal. We shall obtain a contradiction. Let E be a pro-
jection in J but not in I. Since EGE is a Type I AW#*-algebra, there
is a net {P;} of orthogonal projections in the center of @ such that
(1) >_:EP;=E and (2) EQE- P, is homogeneous for each i. For each
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1 let {Eik| kEET(i)} be an orthogonal equivalent set of abelian projec-
tions of least upper bound EP;.

There is an irreducible representation ® of @ on a Hilbert space H
such that (1) the kernel K of ® contains I; (2) ®(J) is the algebra of
completely continuous operators on H; and (3) ®(E)#0. We shall
show that for any positive integer m there are orthogonal equivalent
projections E,, Es, - - -, E, such that EZE;+E;+ - -+ +E, and
E—(Ei+E;+ - - - +En,) EK. This will produce a contradiction to
the fact that ®(E) is a finite dimensional projection on H. Thus, the
algebra @/I will have no CCR ideals.

First assume that there is an index ¢ such that EP;§ K ; then the
set T(¢) is infinite because otherwise EP;&1, CK. By the method of
Theorem 1, for any positive integer m we would be able to write
E,+E;+ - -+ +E,=EP; where E, E,, - - -, E, are orthogonal
equivalent projections. Since ®(EP;) #0 is a completely continuous
operator on H, we would have a contradiction. Therefore, for each ¢
we have EP,EK.

Now let | T(3)| denote the cardinality of the set T'(s). For each
positive integer n there is a set T(z) whose cardinality exceeds #,
otherwise ECI,. Let Si={i| | T(4)| <} and S;={i| | T(4)| is not
ﬁnite} we write, as in Theorem 1,

Ev+ Erv+ -+ + En+ Enpy = 2 {EP:| i €54},

where E{, E{, - - -, Eny1 are mutually orthogonal projections such
that E{ ~E{~ - - - ~E, and E,.€I,. We do not know in this
case whether or not any of the E{ are nonzero. For each 7 in S; we
may write 7)) =U{T(, j)|1<j<m}, where T(i, j) (1<j<m) are
disjoint equipotent subsets of T(7). We let

F,‘,‘ =Z{Eip Pe T(%])}y for (1 éj é m)

Then Fq, Fy, - - -, Fin are mutually orthogonal equivalent projec-
tions. Let

E; =2 {Fi;|i €Sy}, 1=j=m).

The projections E{’, EJ’, - - -, E}/ are mutually orthogonal and

equivalent. For each j and & such that 1<j, k<m, we have that E/
is orthogonal to E{’. Thus, if we set E;=E!+E}!’ (1=5j<m), we
have that Ey, Es, - - - , E, are orthogonal equivalent projections such
that EZ E1+E.+ - - - +Enand such that E—(Ey+Eo+ - - - +E,)
=E}, €I, This completes the proof of Theorem 2.
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3. Structure space of Type I algebras. Let @ be an AW*-algebra
and let Z be the center of @;let M (@) be the set of all maximal ideals
of @ and let Z be the set of all maximal ideals of Z, i.e. the spectrum
of Z. The set M(Q) is given the hull-kernel topology and the set Z
is given the w*-topology when Z is identified with the set of all non-
zero complex-valued homomorphism of Z. There is a homeomorphism
of M(@Q) onto Z given by M—»MNz{MEM(@)}. If MNZ=¢cZ
where MEM(@Q) we let M =M({). Now if A is an element of Z, let
A be the image of 4 under the Gelfand map in the algebra of all con-
tinuous complex-valued functions on Z. If Q is a projection in Z, the
set @Q=1 is a closed two-sided ideal in @. If k(I), the hull of I, is
the set h(I)={Me&M(@)|MDI}, we have that M(Q)—h(I)
={ME)eEM(@)| Q) =1}; we also have that MNI=MQ for all
M in M(@)—h(I).

THEOREM 3. Let @ be an AW*-algebra of Type 1 and let I, be the
*-subalgebra of Q generated by the abelian projections. Then @ is finite
if and only if h(1,) is nowhere dense in M(Q).

PRrOOF. Let @ be finite. Fred B. Wright [6] has proved that the
algebras @/ M {M e M( G,)} are finite Type I AW*-algebras except
possibly on a nowhere dense set NC M(@). The set N is void if and
only if the number of homogeneous summands of @ is finite. If NV is
nonvoid, then MEN if and only if @/M is an AW*-factor of Type
I1;. We immediately see that #(I,) = N and thus that #(I,) is nowhere
dense in Q.

Now assume that @ is not finite. We shall show that 4(7,) containsa
nonvoid open set. Let {Pi} be a net of orthogonal projections in Z
such that D _,P; is the identity operator and such that @P; is homo-
geneous for each <. We may write )_;Es =P, where { Ea}. is a net of
orthogonal equivalent abelian projections of @. Since @ is not finite,
there is a P; such that the cardinality of the set of { E;}+ is not finite.
Let P;=Q. We have that 2(@Q) # M (@) since Q is not the zero pro-
jection. We shall prove the nonempty open set M (@) —£k(@Q) is con-
tained in k(I,). If MEM (@) —h(RQ), we have M = M({) for some ¢
such that Q(¢) =1. Thereis a representation ¥ of @ ontoa Hilbert space
H such that the kernel [{] of ¥ is the closure of { > .{4:B:| 4:€aq,
B.et (1 ékén)} n=1,2,--. } and such that ¥(/,) is the algebra
of completely continuous operators on H. Using the representation
V¥, we prove the closed two-sided ideal J generated by I, and [¢] is
proper in G@. On the contrary, if J contained the identity of @, there
is an element 4 in I, and an element B in [¢] such that ||A +B—1||
<1. This means that A+B has an inverse in @ and hence that
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¥(4+B)=¥(4) has an inverse in ¥(@). However, ¥(4) is a com-
pletely continuous operator and ¥(4) will have no inverse if H is
infinite dimensional. For any integer #>0 we may write Q as the
sum of # orthogonal equivalent projections since Q is the sum of an
infinite set of orthogonal equivalent abelian projections. For the
integer #>0 the dimension of H is not less than » because ¥(Q) 0.
So the dimension of H is infinite. We are forced to conclude that J
is a proper ideal. This means J is contained in a maximal ideal. Since
there is one and only one maximal ideal containing [{], we have
JC M) and so I, CM(L). This completes the proof.

The next theorem characterizes the interior of #(1,) in terms of the
properly infinite central projections.

THEOREM. Let @ be an AW*-algebra of Type 1 with center Z. A pro-
jection P in Z is properly infinite if and only if M(Q)—h(GP) Ch(l,).
In particular, the identity 1 is properly infinite if and only if M(Q)
=h(l,).

ProoF. Let P be a properly infinite central projection and let
M=M@)EM(G)—h(GP). We obtain a contradiction by assuming
that MDI,. Let {P;} be a net of orthogonal central projections with
least upper bound P such that for each 7 the algebra @P; is homo-
geneous. For each i let { E4| k€T ()} be a net of orthogonal equiv-
alent abelian projections of least upper bound P;. Since each P; is
properly infinite, each indexing set 7'(¢) is infinite for the sum of a
finite number of orthogonal abelian projections is finite. For each posi-
tive integer # and for each ¢ the projection P; may be written as the
sum of n orthogonal equivalent projections Fu, -+ -, Fin. If Fp
=Y ;Fa (1=k=mn), P is the sum of n equivalent orthogonal projec-
tions Fi, Fa, - - +, Fn. Now let ¥ be an irreducible representation of
@ on a Hilbert space H such that the kernel of ¥ is M. The projection
P is not in M since P(¢) =1. Because for each positive integer 7, P
may be written as the sum of #» equivalent orthogonal projections H
is not finite dimensional. The ideal generated by [{] and I, is not
proper since M DI,. So there is an 4 in I, such that 1 —4 is a mem-
ber of [¢]. Thus, ¥(4) is the identity operator on H. However ¥(I,)
is the set of all completely continuous operators on the infinite di-
mensional space H. We have now reached a contradiction.

Conversely, we suppose that P is a central projection such that
M(@)—h(@P) Ch(I,). There is no loss of generality if we assume
@P is homogeneous. Indeed, there is a net {Pi} of orthogonal cen-
tral projections such that for each ¢ the algebra @GP, is homogeneous.
It is sufficient to show that each P; is properly infinite. We have
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M(@)—h(GP) = {ME)EM(®)| P¥) =1} C{ME) EM(@)| () =1}
= M(@)—h(GP). So we can assume that QP is a homogeneous alge-
bra. There is a net { E;|i€S} of orthogonal equivalent abelian pro-
jections of least upper bound P. If S is a finite set, then P&1I,. But
in this case every M in M (@) —h(@P) would contain 1since 1 —-PEM
and since PEI,C M. So the indexing set S in not finite and P is
properly infinite.

COROLLARY. If X is an open set in h(l,) and if MEX, there is a
properly infinite projection P such that M & M(GQ)—h(QP) CX.

PRroOF. Since the spectrum Z of Z is a Stonean space, there is an
open-closed set ¥ such that MEY CX. If P is the projection in Z
such that Y={¢€Z|P()=1} we have MEM(@)—r(@P)CX
Ch(1,). So P is a properly infinite projection.

Now that we have an explicit representation for the maximal GCR
ideal of a Type 1 AW*-algebra, we can easily show the structure
space (i.e. the set of all primitive ideals with the hull-kernel topology)
of this ideal is Hausdorff.

Let @ be a C*-algebra and I be an (closed two-sided) ideal of @;
for each 4 in @ we denote the image of 4 under the canonical map of
@ onto @/I by A(I). The algebra @/ is a C*-algebra under the norm
l4(D|| =glb{||4+K]||| KEI}. We make use of the following lemma.

LEMMA. Let @ be a C*-algebra; let I and J be ideals of G; and let
AEL Then ||[AW)|| =|laTNI).

THEOREM. The maximal GCR ideal of a Type I AW*-algebra G
has a Hausdorff structure space.

Proor. Let P(I,) =P, be the structure space of I, taken with the
hull-kernel topology. The space P, is Hausdorff if and only if for
each fixed 4 in I, the function f4=f on P, given by f(I) =||A(I)“ is
continuous. Let p>0 and 4 in I, be given; it is known that the set
tI EP,|f(I) épg is closed. It is sufficient to show that the set

ICP,|f(I)<pf is open in order to show f is continuous on P,.

Let J be an ideal in P, such that f(J) <p. There is a primitive ideal
J1in @ such that JyN\I,=J. There is a { in the spectrum Z of the
center Z of @ such that /1D [¢]. Thus JD [¢]NI,. There is a repre-
sentation ¥ of I, on a Hilbert space H such that (1) the kernel of ¥
is [f]NI, and (2) such that ¥(Z,) is the set C(H) of completely con-
tinuous operators on H. We have that either ¥(J)=C(H) or that
W(J)=(0) because C(H) has no proper ideals. In the first instance
L/([cINL)=J/([t1NI,) or equivalently that I,=J. This is im-
possible. So we have that J=I,N[¢].
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For each BE@ the function {'—||B([{'])|| (' E€Z) is upper semi-
continuous. So there is an open and closed set X in Z such that
rexcirez||ads' Dl <e} since |A([¢D]| =f(7) <p. There is a
central projection P in @& such that X = {§'€Z| B =1} the set
P,—h(I,P) is open in P,. If IEP,—h(I,P) and I=[{']N\I, for some
{'€Z, we have [{'JNLDIP. Since [{']NLDI[¢']-I., we have
P({")=1. Thus, if IEP,—h(I.P), we have || A(D)| =||4T.N['])|
=HA([§"])H <p. Also we have that P(¢)=1. If JDI,P then for each
Bin L ||B(D)|| =||BIN[DI =IBP([¢])]| =0. Thus, J =1I,. We con-
clude that JDI,P so JEP,—h(I,P). This completes the proof.
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