ON CONFORMALLY-FLAT RIEMANNIAN SPACE OF CLASS ONE

R. N. SEN

1. The purpose of this paper is two-fold; first, to obtain necessary and sufficient conditions that a conformally-flat orientable Riemannian space C_{n}^{1} with $n \geqq 3$ be of class one; second, to obtain a normal form for the metric of such a space. A Riemannian space V_{n} is a conformally-flat space C_{n} if there exists a scalar function σ such that the product $\sigma g_{i j}$ of σ and the fundamental tensor $g_{i j}$ has zero curvature; it is of class one if it is isometrically embeddable as a hypersurface in a Euclidean space. The conformal flatness property can be expressed by the condition that $s_{i}=\frac{1}{2} \partial_{i} \log \sigma$ is related to the curvature tensor by

$$
\begin{equation*}
R_{h i j k}+g_{h k} s_{i j}+g_{i j} s_{h k}-g_{h j} s_{i k}-g_{i k} s_{h j}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{i j}=\nabla_{i} s_{j}-s_{i} s_{j}+\frac{1}{2} g_{i j} s_{k} s^{k} . \tag{2}
\end{equation*}
$$

The condition of class one, for an orientable space, implies the existence of a (second fundamental) symmetric tensor $b_{i j}$ such that

$$
\begin{equation*}
R_{h i j k}=b_{h j} b_{i k}-b_{h k} b_{i j} ; \quad \nabla_{i} b_{j k}-\nabla_{j} b_{i k} . \tag{3}
\end{equation*}
$$

The converse is true in the local sense.
The algebraic relations (1), (3) lead to a result of J. A. Schouten [1] which states that $n-1$ of the eigenvalues of $b_{i j}$ at each point of a C_{n}^{1} are equal. Denote this value by ρ, the remaining eigenvalue by $\tilde{\rho}$ and denote by e_{i} the eigenvector of $b_{i j}$ belonging to $\tilde{\rho}$. The quantities $\rho, \tilde{\rho}$ are also known as the principal normal curvatures and e_{i} the unit vector tangential to the line of curvature corresponding to $\tilde{\rho}$. Assume that $\tilde{\rho} \neq \rho \neq 0$. Then

$$
\begin{equation*}
b_{i j}=\rho g_{i j}+(\tilde{\rho}-\rho) e_{i} e_{j} \tag{4}
\end{equation*}
$$

and by contraction of (3) we express the Ricci tensor in terms of $g_{\imath j}$ and $e_{i} e_{j}$; or in $g_{i j}$ and $b_{i j}$. We thus find (a), (b) below; by the second identity in (3) together with the property of conformal flatness we find (c) below.
(a)

$$
b_{i j}=-\frac{1}{n-2}\left(\frac{1}{\rho} R_{i j}+\tilde{\rho} g_{i j}\right),
$$

Received by the editors May 27, 1965.
(b)
(c)

$$
\begin{aligned}
R_{h i j k}= & \rho^{2}\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right) \\
& +\rho(\tilde{\rho}-\rho)\left(g_{h j} e_{i} e_{k}+g_{i k} e_{h} e_{j}-g_{h k} e_{i} e_{j}-g_{i j} e_{h} e_{k}\right) \\
& \partial_{i} \rho \text { is proportional to } e_{i} .
\end{aligned}
$$

These formulas are due to Verbickii [2]; he also showed that the existence of scalar functions $\rho, \tilde{\rho}$ and a unit vector field e_{i} such that (b), (c) hold is sufficient that V_{n} be locally a C_{n}^{1}.
2. The above results are most easily verified by choosing an orthonormal basis for the tangent space consisting of eigenvectors of $b_{i j}$; we choose e_{i} to be the first of these. Then $g_{i j}$ and $b_{i j}$ take diagonal forms with respect to this basis,

$$
\left[g_{i j}\right]=\operatorname{diag}(1,1, \cdots), \quad\left[b_{i j}\right]=\operatorname{diag}(\tilde{\rho}, \rho, \rho, \cdots)
$$

For brevity we only give the first two diagonal elements:

$$
\left[g_{i j}\right]=\operatorname{diag}(1,1) ; \quad\left[b_{i j}\right]=\operatorname{diag}(\tilde{\rho}, \rho) ; \quad\left[e_{i} e_{j}\right]=\operatorname{diag}(1,0) .
$$

Then

$$
\left[R_{i j}\right]=\operatorname{diag}\left(-(n-1) \rho \tilde{\rho}, \quad-\left\{(n-2) \rho^{2}+\rho \tilde{\rho}\right\}\right) ;
$$

and among $g_{i j}, b_{i j}, R_{i j}, e_{i} e_{j}$ any one can be written as a linear combination of any two. This is how (5) below is proved.

Theorem 1. If $a V_{n}$ is $a C_{n}^{1}$, then there are scalars $E \neq 0$ and F such that

$$
\begin{equation*}
R_{h i j k}=E\left(R_{h j} R_{i k}-R_{h k} R_{i j}\right)+F\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right) . \tag{5}
\end{equation*}
$$

Conversely, if in a C_{n} scalars $E \neq 0, F$ exist such that (5) holds, where

$$
\begin{equation*}
R=-\frac{n-1}{(n-2) E}+(n-1)(n-2) F \tag{6}
\end{equation*}
$$

then C_{n} is a C_{n}^{1}.
Proof of the converse. Contraction of (5) with $g^{h k}$ gives

$$
R_{i j}=E R_{j}^{k} R_{i k}-E R R_{i j}-(n-1) F g_{i j} .
$$

Hence, every eigenvalue λ of $R_{i j}$ satisfies

$$
\lambda=E \lambda^{2}-E R \lambda-(n-1) F ;
$$

which, by (6), has as its solutions

$$
\lambda=\frac{-1}{(n-2) E}, \quad \tilde{\lambda}=(n-1)(n-2) F
$$

By (6), λ has multiplicity $n-1 ; \tilde{\lambda}$ has multiplicity 1 . The situation is now easily reduced to that of a C_{n} involving a second fundamental tensor $b_{i j}$ which is a linear combination of $g_{i j}$ and $e_{i} e_{j}$, where e_{i} is a unit eigenvector of $R_{i j}$ associated with $\bar{\lambda}$. It is a simple exercise to relate the $\lambda, \tilde{\lambda}$ above with $\rho, \tilde{\rho}$ resulting in

$$
\lambda=-\left\{(n-2) \rho^{2}+\rho \tilde{\rho}\right\}, \quad \tilde{\lambda}=-(n-1) \rho \tilde{\rho} .
$$

We thus obtain
Theorem 2. If $a V_{n}$ is $a C_{n}^{1}$, then

$$
\begin{equation*}
R_{h i j k}=\frac{R_{h j} R_{i k}-R_{h k} R_{i j}}{(n-2)\left\{(n-2) \rho^{2}+\rho \tilde{\rho}\right\}}-\frac{\rho \tilde{\rho}}{n-2}\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right), \tag{7}
\end{equation*}
$$

where $\tilde{\rho} \neq \rho \neq 0$ are scalars. Conversely if a C_{n} satisfies (7), then C_{n} is a C_{n}^{1} if $R=-(n-1)\left\{(n-2)^{2} \rho^{2}+2 \rho \tilde{\rho}\right\}$.
3. Theorem 1 of $\S 2$ can be applied to find the metric of a C_{n}^{1}. This can be done by taking the fundamental tensor of a C_{n} in the form $g_{i i}=1 / \phi^{2}, g_{i j}=0,(i \neq j)$, and looking for the general form of ϕ for which the equations (5) and (6) are satisfied. The fundamental tensor is then obtained in a canonical form as

$$
\begin{align*}
& g_{i i}=1 /[f(U)]^{2}, \quad g_{i j}=0, \quad(i \neq j), \quad \text { where } U=\sum_{i}\left(X^{i}\right)^{2}+c \tag{8}\\
& \text { and } X^{i}=a x^{i}+b^{i} \text { with } a \neq 0, b, c \text { constants, }
\end{align*}
$$

where f is any real analytical function of U subject to a restriction stated below. The normal form of the metric is now obtained by taking $a=1, b^{i}=c=0$ in (8).

This metric and some properties which have been obtained in previous papers [3], [4] are stated in the following theorem:

Theorem 3. The coordinates of any C_{n}^{1} may be so chosen that its metric assumes the normal form

$$
\begin{equation*}
d s^{2}=\sum_{i}\left(d x^{i}\right)^{2} /[f(\theta)]^{2}, \quad \theta=\sum_{i}\left(x^{i}\right)^{2}, \tag{9}
\end{equation*}
$$

where f is any real analytic function of θ subject to the restriction

$$
(n-1) f f^{\prime}+\theta f f^{\prime \prime}-(n-1) \theta f^{\prime 2} \neq 0, \quad\left(f^{\prime}=d f / d \theta, \text { etc. }\right) .
$$

If $\rho \neq 0$ and $\tilde{\rho}$ are the eigenvalues of multiplicity $n-1$ and 1 respectively of the second fundamental tensor of the space (9), then

$$
\begin{equation*}
\rho^{2}=4 f^{\prime}\left(f-\theta f^{\prime}\right), \quad \rho \tilde{\rho}=4\left(f f^{\prime}+\theta f f^{\prime \prime}-\theta f^{\prime 2}\right) \tag{10}
\end{equation*}
$$

The eigenvector $e_{i}=x^{i} / \theta^{1 / 2} f$ corresponding to $\tilde{\rho}$ is orthogonal to the hypersurface having constant curvature $\bar{k}^{2}=f^{2} / \theta$. If the C_{n}^{1} is symmetric in the sense of Cartan, then either $f=a \theta+b$ (a space of constant curvature) or $f=c \theta^{1 / 2}$, where a, b, c are nonzero constants. In the second case e_{1} is a parallel vector field and the C_{n}^{1} is reducible.

I am thankful to the referee for his helpful suggestion in the matter of presentation of the paper.

Department of Pure Mathematics, Calcutta University

References

1. J. A. Schouten, Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer etc., Math. Z. 11 (1921), 58-88.
2. L. L. Verbickii, Geometry of conformal Euclidean spaces of class one, Vol. 9, Transactions of the seminar of vector and tensor analysis (translated from Russian), 1952, pp. 146-182.
3. R. N. Sen, On a type of Riemannian space conformal to a flat space, J. Indian Math. Soc. 21 (1957), 105-114.
4. -, Conformally Euclidean space of class one, Indian J. Math. 6 (1964), 93-103.
