A NOTE ON THE GALOIS THEORY OF LINEAR
HOMOGENEOUS DIFFERENCE EQUATIONS

CHARLES H. FRANKE

1. Introduction. We assume the following throughout. K is an
inversive difference field of characteristic zero. f is a linear homo-
geneous difference equation of effective order » with coefficients in K.
a=(@®, - - -, a™) is a fundamental system for f and M =K({a). C is
the subfield of M of constants, that is, solutions to y;=7y. K is the
algebraic closure of K(C) in M.

M is a normal extension of K if for each z& (M —K) there is a
difference automorphism ¢ of M/K with ¢ (2) #2. The purpose of this
note is to prove the following theorem.

THEOREM. If K =K then M is a normal extension of K.

This result is of importance in several places in the Galois theory
for linear homogeneous difference equations. Theorem 4 of [3] can
now be stated in the following form.

Assume K=Ky and G s the full Galois group of M /K. Then there
is a one-to-one correspondence belween connected algebraic subgroups of
G and intermediate fields which are algebraically closed in M.

If we define f to be solvable in M by elementary operations over K
if and only if M is contained in a ¢LE of K, [4, p. 241], then Theo-
rems 2.1 and 2.2 of [4] can be combined and restated as follows.

f is solvable in M by elemeniary operations over K if and only if the
Galois group of M /K s solvable.

2. Preliminaries. The following notation is used in the proof.
y=(yM, ..., y®) is a vector of transformal indeterminates.
x = (x¢9) is an # X7 matrix of ordinary algebraic indeterminates. If
R is a difference ring then R[x] denotes the difference over-ring of R
in which the x%? are constant. If L is a field then V(L) denotes the
set of nonsingular # X7 matrices over L. If H is an algebraic matrix
group with elements in V(L) then dim H denotes the dimension of
the ideal of polynomials in L[x] vanishing on the component of the
identity of H.

The term “algebraic automorphism” will be used to mean “an auto-
morphism which is not necessarily a difference automorphism.”

The proof uses the following lemma [2, Lemma 1, p. 530].
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LEMMA. Assume that L is a field of characteristic zero and L is an
algebraic closure of L. If H is an irreducible algebraic matrix group in
V(L) which is defined by a set of polynomials in L[x] and G=HN V(L)
then dim G=dim H.

3. Proof of the Theorem. Define G to be the transformal Galois
group of M/K. We will show first that it is sufficient to prove that G
is an algebraic matrix group and that dim G=t.d.(M, K). Assume
that z is in the fixed field of G and L is the algebraic closure in M of
K(z). Then L is in the fixed field of G1, the component of the identity
of G. Therefore G is contained in the Galois group of M/L. Since
dim G=dim Gy, t.d.(M, K)=t.d.(M, L). Therefore zEK, and M is
a normal extension of K.

Define B as the prime reflexive ideal in K {y} with generic zero a.
Define a difference homomorphism F from K { y} to M[x] by F(y®)
= > xda®, Define JCMJ[x] as the image of B under F. Fix a
vector space basis v of M/C. Define S to be the set of all R® & C[x]
which appear when each IE€J is written in the form I= ) R®y®,
Define S as the ideal generated by S in C[x].

G may be considered as a matrix group by assigning the matrix
(k@P) to e EG where g(a®) = Y _ktda®, G is the set of solutions to
S in V(C) [3, Theorem 1]. S is prime and dim S=t.d.(M, K) [3,
Theorem 2].

Define P to be the subfield of M of all periodic elements of M.
P is an algebraic extension of C so P CK. Choose an algebraic closure
P* of P. Since P is algebraically closed in K, P* can be chosen com-
patible with K and with M. Since P* is algebraic over K and K is
algebraically closed in M, K{P*) and M are linearly disjoint over K.
Each periodic element of M({P*) can be written uniquely in the form
g=2_ap® where a"E M and p is a vector space basis of P*/P.
If j is a common period of g and the p then af’ =a®. Thus a® EP
and & P*. Therefore, the set of periodic elements of M{P*)is P*.

Define M* = M(P*) and K*=K(P*). Define B* to be the prime
reflexive ideal in K*{y} with generic zero a. Extend F to K* {y} and
define J*C M*[x] as the image of B* under F. Fix a vector space
basis w of M*/P*. Define S* to be the set of all R® & P*[x] which
appear when each & J* is written in the form I= ) R®w®, Define
S* as the ideal generated by S* in P*[x].

Define H to be the set of all matrices (p¢?)E V(P*) with the
property that there is an algebraic automorphism 4 of M*/K* so
that 4(ef”) = D> pGdaf. H is a group. We will show that H is an
algebraic group defined by S*. Assume that (p¢+?) € H. The algebraic
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homomorphism of K*{y} to M* defined by yP—af— Y ptidad
takes B* to zero. Therefore, () is a solution to J* and hence to
S*. Conversely, if (p¢+?) is a solution to §* in V(P*) then the alge-
braic homomorphism of K*{y} to M* defined by y@P— > ptida
sends B* to zero. Therefore it induces an algebraic homomorphism 4
of K*{a}. Since the equations 4 (af’) = > pti-daf’ can be solved for
the af, 4 is surjective. Since K*{a} is an integral domain of finite
transcendence degree over K*, 4 is bijective [6, Lemma 5.3, p. 34].
By extending 4 to the quotient field of K*{a} one obtains an ele-
ment of H.

Next we will show that H is irreducible.

Since K* is algebraically closed in M* there is a generic zero 8 of B*
with K*(8) and M* linearly disjoint over K*. Define B’ to be the
prime reflexive ideal in M*{y} with generic zero 8. Extend F to
M* |y} and define J' as the image of B’ under F. Since the equations
F(y®) = Zx(i'”ag) can be solved for the x¢?, Fis surjective. Define
S’ as the set of all R®E&P*[x] which appear when each I€J' is
written in the form I= ) R®w®, Define S’ as the ideal generated
by S”in P*[x]. Since f(8%?) =0 there are constants ¢ & M*(8) with
B =D ¢, If hEM*[x] and h=F(g) for g&M*{y} then
2(BP)=h(ct“?). Therefore J' is a prime ideal with generic zero
c=(c?). Since the w are linearly independent over the periodic
elements of M*, they are linearly independent over the periodic ele-
ments of any overfield of M* [5, §3]. Therefore S’ is a prime ideal
with generic zero c.

If DEB’ then we may write D= »_dPu(® where d("’EK*{y} and
u is a vector space basis of M*/K*. Since D(8) =0 and « is also a vec-
tor space basis of M*(B)/K*(B), d?(8)=0 and d¥» & B*. Therefore
each IEJ’ can be written in the form D I@u® with I E J*, Writ-
ing I =Y [Gkg® [GHECS* we obtain

I= Z J GGk gy gy (o)
Finally we may write
uDp® = D pUkbyy®, pUkD & P*,
Thus,
I= Z Z pUR DGRy,

Therefore S’ CS*, S*=3" and H is irreducible.

Next we will show that H is defined by S.

Since BC B*, B8 is a solution of B. Therefore ¢ is a solution of J and
hence of S. Therefore SCS¥*, and H annuls S.
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Assume pE V(P*) is a solution to S. If w is a vector space basis of
K*/K then each DEB* can be written in the form D= Y d@Ww®,
dU)EK{y}. Since w is also a vector space basis of M*/M, dP(a) =0
and d@E&B. Therefore each I&J* can be written in the form
I= Y IWW, IDE T, Since p is a solution to S, p is a solution to J.
Therefore, p is a solution to J* and hence to S*. Thus p&H and H
is the set of solutions to S in V(P*).

The hypotheses of the Lemma are satisfied and we obtain dim H
=dim(HNV(C)) =dim G. Further, since P* is algebraically closed,
dim H=dim S*. Since c is a generic zero of S, and P* is an algebraic
extension of C, t.d. (M, K)=dim S=t.d. (C(c), C)=t.d. (P*(c), P*)
=dim S*. Therefore dim G=t.d. (M, K), and the proof is complete.
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1. Introduction. A free algebra B™(r) over the class K(r) of all
(universal) algebras of a fixed type 7 is called an absolutely free alge-
bra. The following is a simple characterization of absolutely free alge-
bras.

THEOREM. Let A be an algebra of type 7, and let M be a generating
set of A. Then the following two conditions are equivalent:

(1) U is absolutely freely generated by M,

(ii) M 1is independent in every extension B of N with rank B I M I
and if there are nullary operations, then A =P ().

Received by the editors May 10, 1966.
1 Research supported by the National Science Foundation under grant number
GP-4221.



