A NOTE ON THE GALOIS THEORY OF LINEAR HOMOGENEOUS DIFFERENCE EQUATIONS

CHARLES H. FRANKE

1. **Introduction.** We assume the following throughout. K is an inversive difference field of characteristic zero. f is a linear homogeneous difference equation of effective order n with coefficients in K. $\alpha = (\alpha^{(1)}, \dots, \alpha^{(n)})$ is a fundamental system for f and $M = K\langle \alpha \rangle$. C is the subfield of M of constants, that is, solutions to $y_1 = y$. K_M is the algebraic closure of K(C) in M.

M is a normal extension of K if for each $z \in (M-K)$ there is a difference automorphism σ of M/K with $\sigma(z) \neq z$. The purpose of this note is to prove the following theorem.

THEOREM. If $K = K_M$ then M is a normal extension of K.

This result is of importance in several places in the Galois theory for linear homogeneous difference equations. Theorem 4 of [3] can now be stated in the following form.

Assume $K = K_M$ and G is the full Galois group of M/K. Then there is a one-to-one correspondence between connected algebraic subgroups of G and intermediate fields which are algebraically closed in M.

If we define f to be solvable in M by elementary operations over K if and only if M is contained in a qLE of K, [4, p. 241], then Theorems 2.1 and 2.2 of [4] can be combined and restated as follows.

f is solvable in M by elementary operations over K if and only if the Galois group of M/K_M is solvable.

2. **Preliminaries.** The following notation is used in the proof. $y = (y^{(1)}, \dots, y^{(n)})$ is a vector of transformal indeterminates. $x = (x^{(i,j)})$ is an $n \times n$ matrix of ordinary algebraic indeterminates. If R is a difference ring then R[x] denotes the difference over-ring of R in which the $x^{(i,j)}$ are constant. If L is a field then V(L) denotes the set of nonsingular $n \times n$ matrices over L. If H is an algebraic matrix group with elements in V(L) then dim H denotes the dimension of the ideal of polynomials in L[x] vanishing on the component of the identity of H.

The term "algebraic automorphism" will be used to mean "an automorphism which is not necessarily a difference automorphism."

The proof uses the following lemma [2, Lemma 1, p. 530].

Received by the editors March 28, 1966.

LEMMA. Assume that L is a field of characteristic zero and \overline{L} is an algebraic closure of L. If H is an irreducible algebraic matrix group in $V(\overline{L})$ which is defined by a set of polynomials in L[x] and $G = H \cap V(L)$ then dim $G = \dim H$.

3. **Proof of the Theorem.** Define G to be the transformal Galois group of M/K. We will show first that it is sufficient to prove that G is an algebraic matrix group and that $\dim G = \text{t.d.}(M, K)$. Assume that z is in the fixed field of G and L is the algebraic closure in M of $K\langle z\rangle$. Then L is in the fixed field of G_1 , the component of the identity of G. Therefore G_1 is contained in the Galois group of M/L. Since $\dim G = \dim G_1$, t.d.(M, K) = t.d.(M, L). Therefore $z \in K$, and M is a normal extension of K.

Define B as the prime reflexive ideal in $K\{y\}$ with generic zero α . Define a difference homomorphism F from $K\{y\}$ to M[x] by $F(y^{(i)}) = \sum x^{(i,j)}\alpha^{(j)}$. Define $J \subset M[x]$ as the image of B under F. Fix a vector space basis v of M/C. Define S to be the set of all $R^{(k)} \subset C[x]$ which appear when each $I \subset J$ is written in the form $I = \sum R^{(k)}v^{(k)}$. Define \overline{S} as the ideal generated by S in C[x].

G may be considered as a matrix group by assigning the matrix $(k^{(i,j)})$ to $\sigma \in G$ where $\sigma(\alpha^{(i)}) = \sum k^{(i,j)}\alpha^{(j)}$. G is the set of solutions to \overline{S} in V(C) [3, Theorem 1]. \overline{S} is prime and dim $\overline{S} = \text{t.d.}(M, K)$ [3, Theorem 2].

Define P to be the subfield of M of all periodic elements of M. P is an algebraic extension of C so $P \subset K$. Choose an algebraic closure P^* of P. Since P is algebraically closed in K, P^* can be chosen compatible with K and with M. Since P^* is algebraic over K and K is algebraically closed in M, $K\langle P^*\rangle$ and M are linearly disjoint over K. Each periodic element of $M\langle P^*\rangle$ can be written uniquely in the form $q = \sum a^{(i)}p^{(i)}$ where $a^{(i)} \in M$ and p is a vector space basis of P^*/P . If p is a common period of p and the $p^{(i)}$ then $p^{(i)} \in P$ and $p \in P^*$. Therefore, the set of periodic elements of $M\langle P^*\rangle$ is P^* .

Define $M^* = M\langle P^* \rangle$ and $K^* = K\langle P^* \rangle$. Define B^* to be the prime reflexive ideal in $K^*\{y\}$ with generic zero α . Extend F to $K^*\{y\}$ and define $J^* \subset M^*[x]$ as the image of B^* under F. Fix a vector space basis w of M^*/P^* . Define S^* to be the set of all $R^{(k)} \subset P^*[x]$ which appear when each $I \subset J^*$ is written in the form $I = \sum R^{(k)} w^{(k)}$. Define \overline{S}^* as the ideal generated by S^* in $P^*[x]$.

Define H to be the set of all matrices $(p^{(i,j)}) \in V(P^*)$ with the property that there is an algebraic automorphism A of M^*/K^* so that $A(\alpha_k^{(i)}) = \sum p^{(i,j)} \alpha_k^{(j)}$. H is a group. We will show that H is an algebraic group defined by \overline{S}^* . Assume that $(p^{(i,j)}) \in H$. The algebraic

homomorphism of $K^*\{y\}$ to M^* defined by $y_k^{(i)} \rightarrow \alpha_k^{(i)} \rightarrow \sum p^{(i,j)} \alpha_k^{(j)}$ takes B^* to zero. Therefore, $(p^{(i,j)})$ is a solution to J^* and hence to \overline{S}^* . Conversely, if $(p^{(i,j)})$ is a solution to \overline{S}^* in $V(P^*)$ then the algebraic homomorphism of $K^*\{y\}$ to M^* defined by $y_k^{(i)} \rightarrow \sum p^{(i,j)} \alpha_k^{(j)}$ sends B^* to zero. Therefore it induces an algebraic homomorphism A of $K^*\{\alpha\}$. Since the equations $A(\alpha_k^{(i)}) = \sum p^{(i,j)} \alpha_k^{(j)}$ can be solved for the $\alpha_k^{(j)}$, A is surjective. Since $K^*\{\alpha\}$ is an integral domain of finite transcendence degree over K^* , A is bijective [6, Lemma 5.3, p. 34]. By extending A to the quotient field of $K^*\{\alpha\}$ one obtains an element of H.

Next we will show that *H* is irreducible.

Since K^* is algebraically closed in M^* there is a generic zero β of B^* with $K^*\langle\beta\rangle$ and M^* linearly disjoint over K^* . Define B' to be the prime reflexive ideal in $M^*\{y\}$ with generic zero β . Extend F to $M^*\{y\}$ and define J' as the image of B' under F. Since the equations $F(y_k^{(i)}) = \sum x^{(i,j)} \alpha_k^{(j)}$ can be solved for the $x^{(i,j)}$, F is surjective. Define S' as the set of all $R^{(k)} \in P^*[x]$ which appear when each $I \in J'$ is written in the form $I = \sum R^{(k)} w^{(k)}$. Define \overline{S}' as the ideal generated by S' in $P^*[x]$. Since $f(\beta^{(i)}) = 0$ there are constants $c^{(i,j)} \in M^*\langle\beta\rangle$ with $\beta^{(i)} = \sum c^{(i,j)} \alpha^{(j)}$. If $h \in M^*[x]$ and h = F(g) for $g \in M^*\{y\}$ then $g(\beta^{(i)}) = h(c^{(i,j)})$. Therefore J' is a prime ideal with generic zero $c = (c^{(i,j)})$. Since the $w^{(j)}$ are linearly independent over the periodic elements of any overfield of M^* [5, §3]. Therefore \overline{S}' is a prime ideal with generic zero c.

If $D \in B'$ then we may write $D = \sum d^{(j)}u^{(j)}$ where $d^{(j)} \in K^*\{y\}$ and u is a vector space basis of M^*/K^* . Since $D(\beta) = 0$ and u is also a vector space basis of $M^*\langle\beta\rangle/K^*\langle\beta\rangle$, $d^{(j)}(\beta) = 0$ and $d^{(j)} \in B^*$. Therefore each $I \in J'$ can be written in the form $\sum I^{(j)}u^{(j)}$ with $I^{(j)} \in J^*$. Writing $I^{(j)} = \sum I^{(j,k)}w^{(k)}$, $I^{(j,k)} \in S^*$ we obtain

$$I = \sum I^{(j,k)} u^{(j)} w^{(k)}.$$

Finally we may write

$$u^{(j)}w^{(k)} = \sum p^{(j,k,l)}w^{(l)}, \quad p^{(j,k,l)} \in P^*.$$

Thus,

$$I = \sum \sum p^{(j,k,l)} I^{(j,k)} w^{(l)}.$$

Therefore $S' \subset \overline{S}^*$, $\overline{S}^* = \overline{S}'$ and H is irreducible.

Next we will show that H is defined by \overline{S} .

Since $B \subset B^*$, β is a solution of B. Therefore c is a solution of J and hence of S. Therefore $\overline{S} \subset \overline{S}^*$, and H annuls \overline{S} .

Assume $p \in V(P^*)$ is a solution to \overline{S} . If ω is a vector space basis of K^*/K then each $D \in B^*$ can be written in the form $D = \sum d^{(j)}\omega^{(j)}$, $d^{(j)} \in K\{y\}$. Since ω is also a vector space basis of M^*/M , $d^{(j)}(\alpha) = 0$ and $d^{(j)} \in B$. Therefore each $I \in J^*$ can be written in the form $I = \sum I^{(j)}\omega^{(j)}$, $I^{(j)} \in J$. Since p is a solution to S, p is a solution to J. Therefore, p is a solution to J^* and hence to \overline{S}^* . Thus $p \in H$ and H is the set of solutions to \overline{S} in $V(P^*)$.

The hypotheses of the Lemma are satisfied and we obtain dim $H = \dim(H \cap V(C)) = \dim G$. Further, since P^* is algebraically closed, dim $H = \dim \overline{S}^*$. Since c is a generic zero of \overline{S} , and P^* is an algebraic extension of C, t.d. $(M, K) = \dim \overline{S} = \text{t.d.}$ (C(c), C) = t.d. $(P^*(c), P^*) = \dim \overline{S}^*$. Therefore dim G = t.d. (M, K), and the proof is complete.

REFERENCES

- 1. R. Cohn, Difference algebra, Wiley, New York, 1965.
- 2. M. Epstein, On the theory of Picard-Vessiot extensions, Ann. of Math. 62 (1955), 528-547.
- 3. C. Franke, Picard-Vessiot theory of linear homogeneous difference equations, Trans. Amer. Math. Soc. 3 (1963), 491-515.
- 4. ——, Solvability of linear homogeneous difference equations by elementary operations, Proc. Amer. Math. Soc. 1 (1966), 240-246.
 - 5. ——, Reducible linear homogeneous difference equations, (to appear).
 - 6. I. Kaplanksy, An introduction to differential algebra, Hermann, Paris, 1957.

SETON HALL UNIVERSITY

A NOTE ON ABSOLUTELY FREE ALGEBRAS

K.-H. DIENER AND G. GRÄTZER¹

1. **Introduction.** A free algebra $\mathfrak{P}^{(m)}(\tau)$ over the class $K(\tau)$ of all (universal) algebras of a fixed type τ is called an absolutely free algebra. The following is a simple characterization of absolutely free algebras.

THEOREM. Let \mathfrak{A} be an algebra of type τ , and let M be a generating set of \mathfrak{A} . Then the following two conditions are equivalent:

- (i) \mathfrak{A} is absolutely freely generated by M;
- (ii) M is independent in every extension \mathfrak{B} of \mathfrak{A} with rank $\mathfrak{B} \leq |M|$ and if there are nullary operations, then $\mathfrak{A}^c \cong \mathfrak{P}^{(0)}(\tau)$.

Received by the editors May 10, 1966.

¹ Research supported by the National Science Foundation under grant number GP-4221.