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1. Introduction. Let AT be a compact set in the complex plane C.

By R(X) is meant the function algebra which consists of functions

uniformly approximable on X by rational functions whose poles lie

outside X. Then R(X) is a subalgebra of C(X), the algebra of all

complex valued continuous functions on X, and the maximal ideal

space of R(X) can be identified with X.

In this note we examine the nature of the Gleason parts of R(X)

and obtain the result that each nontrivial part has positive planar

Lebesgue measure, and each trivial part is a peak point. §2 contains a

brief summary of the definitions and facts about Gleason parts and

representing measures which are relevant to the later proofs. In §3 the

main result is established along with some noteworthy consequences.

The concluding remarks of §4 are directed primarily at the numerous

unproven but conjectured properties of the parts of R(X).

2. Gleason parts and representing measures. For an arbitrary

function algebra A on a compact metrizable space X, let M denote

its maximal ideal space and 5 its Silov boundary. Gleason [4] in-

troduced an equivalence relation on M which, realizing A as a func-

tion algebra on M, can be described as follows:

Definition 2.1. For two points mi and m2 in M, mi is (Gleason)

equivalent to m2 (write mir^m2) if

sup{ | f(mO | :f(m2) = 0, ||/|| g l} < 1.

Gleason has shown that "~" defines an equivalence relation on M

and the equivalence classes of M are called the (Gleason) parts of M.

Definition 2.2. A representing measure for a point m in M is a

positive regular Borel measure p on M which satisfies

f(m) =   I fdp   for all / in A.

Each point in M always has a representing measure supported on S.

Of special interest to us is the existence of certain representing

measures for points which are not peak points for A. (A peak point for

A is a point in M for which there is a function/ in A satisfying/(w) = 1

and \f(m') \ < 1 for m' different from m in M.) If we let P denote the
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set of peak points of A, the facts we will need are the following:

Lemma 2.3. If m is not in P there exists a representing measure pfor

m with p(m) =0.

Lemma 2.4. Let pi and p2 be representing measures for the points mi

and m2 in M. Let Qi and Q2 denote the parts of M containing mi and m2

respectively. If Qi^Q2, then pi and p2are singular and pi(Q2) =0=p2(Qi).

For a proof of Lemma 2.3 see [2]; for a proof of Lemma 2.4 see [3].

3. R(X). We now return to the case of the algebra R(X). Let X

denote Lebesgue planar measure. Then our main result is:

Theorem 3.1. If a point x in X is not a peak point of R(X), then Qx,

the part containing x, has positive \-measure.

We will need the following two lemmas in the proof. Proofs of both

of these lemmas are contained in the proof of Theorem 4 of [2].

Lemma 3.2. Let v be any positive measure on X. Let

C       dv(z)
N(y) = I   T-^r •

Jx   I 2 — y\

Then N(y) is finite a.e.-dX.

Lemma 3.3. Let a be any measure on X. Let

C    da(z)
F(y) =      —^ ■

J x z — y

1/ F(y)=0 a.e.-dX, then <r = 0.

Proof of Theorem 3.1. Let x be as hypothesized. Then Lemma

2.3 provides a representing measure p for x such that p has no mass at

x. Let 5 be the unit point mass at x. Then both p and 5 represent x so

that p — 8 = v is a nonzero measure which annihilates R(X), v A-R(X).

Let N(y)=Jxd\v\ (z)/|z-y| and F(y)=fxdv(z)/(z-y).
Let [/= {yEC: N(y)< «> and F(y)^0J. If y is not in X, the func-

tion/(z) = l/(z — y) belongs to R(X). But since v ±R(X) we have

0=   f/(z)dv(z)=   f^- = F(y).
j J  z — y

Thus UEX. Moreover X(C7)>0. For Lemma 3.2 yields

X(U) =X({yEC:F(y) ^ 0})

and Lemma 3.3 states
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X({yEC:F(y) * o}) > 0.

To establish the theorem, then, it is enough to show UEQx- To do

this we utilize Lemma 2.4. Indeed, for each y in U we obtain a repre-

senting measure which is absolutely continuous with respect to p.

Let/ be any rational function in R(x). Then

g(z) = (f(z)-f(y))/(z-y)

is also a rational function in R(X). Hence

C Cf(z)-f(y) C     dv(z)
0 =      g(z)dv = <Ms) =     /(«) — -f(y)F(y),

J J       z — y J z—y

since Niy) < oo. But F(y)^0 so that

/l      dv(z)

F(y)  z — y

But if the above holds for rational functions in RiX), the same is

true for uniform limits, from which we conclude:

ffv = (1/F(y))(v/iz — y)) is a complex representing measure for y (by

which is meant any finite complex Borel measure which satisfies the

representing measure equation for y).

At this point2 we appeal to a recent result of Hoffman and Rossi

[5]. Their theorem states, for arbitrary function algebras, given any

complex representing measure cry for a point m in M, there exists a

(positive) representing measure vy with vy absolutely continuous with

respect to <jy. Applying the Hoffman and Rossi theorem to ay, which is

clearly absolutely continuous with respect to v, yields a representing

measure vy for y with

vy = hp + tox.

It is now evident that vy = Qi-\-t)p is the measure we seek. Thus, by

Lemma 2.4, UEQx and Qx has positive X-measure.

Corollary 3.4. There are at most countably many parts of RiX) off

the set of peak points of RiX), each with positive \-measure.

Corollary 3.5. A point of X is a peak point of RiX) if and only if x

is a point part itrivial part).

2 Bishop has indicated how to avoid appealing to this result: If {/„} CLA, ||/„|| gl

for all n and/»(*)—»1, then ffndu-^l. If / is a weak* cluster point of {/„} in L°°(m),

then/=l a.e.-dji and there is a subsequence {f„k} such that f„k—>f weak*. Hence

fnt(y) = ff»kd<ry-*l. This, by the definition of Gleason part, shows directly y&Qx-
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Proof. By the theorem point parts are peak points. But it is clear

from the definition of peak point that such a point is always a point

part.

Corollary 3.6. 7/ every point o/ X is a point part, then R(X)
= C(X).

Proof. By Corollary 3.5 this coincides with the well-known the-

orem of Bishop [2] for the minimal boundary of R(X). (Hence

Theorems 4 and 5 of [2] can be formulated in terms of point parts

rather than the minimal boundary.)

It should be noted that the proof of Theorem 3.1 follows very

closely the proof of Theorem 4 of [2 ] and that most of the work was

already done by Bishop in that paper.

4. Concluding remarks. Apparently Theorem 3.1 is the first and

only information available about the parts of R(X) for an arbitrary

compact set X (For "nice" sets X cf. [6] and [l ].) However it hints at

several other reasonable conjectures, the proofs of which seemingly

should be as easily accessible as the above. Among these conjectures

perhaps the foremost is the question of the connectivity of the parts.

But also of interest is the question of whether two nontrivial parts

may "touch" in the sense that points in one lie in the closure of an-

other, or whether nontrivial parts must always be separated by peak

points. These two questions are briefly summarized in the following

conjecture, where P denotes the set of peak points of R(X).

Conjecture 4.1. Each component of X — P is a nontrivial part

of R(X).
Although the number of nontrivial parts according to Corollary 3.4

is at most countable, and examples with an arbitrary finite number or

countably many are trivial to construct, we have not been able to

verify that, for a compact set without interior, R(X) may have, say,

just one nontrivial part. Since we feel this almost certainly must be

possible, and can construct examples without interior in which a

single part is dense, it would be interesting to see some such examples.

As a final remark we note that Corollary 3.6 provides a positive

partial answer to the general conjecture that, for an arbitrary func-

tion algebra A with maximal ideal space M, A coincides with C(M) if

each point of M is a point part.
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