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1. Introduction. Let D be a domain (an open connected subset) in

the complex plane and let/ be a complex-valued analytic function on

D. Then the classical maximum modulus theorem says that either

/(z)    has no maximum on D or that |/(z) |  is a constant on D. If

/(z)    is a constant, it follows readily that/(z) is itself constant.

If/ has values in a complex 5-space, it is well known [5, p. 230], or

[6, p. 100] that the theorem holds. However, the strong form of the

maximum modulus theorem, where if |/(z)| is constant then /(z) is

constant, is no longer true in general. This is illustrated by the follow-

ing simple example [6, p. 100]. Let D be the open unit disc and define

/: D—=>?„ by/(z) = (1, z). Then/is analytic, not constant, and |/(z) | = 1

for all z in D. (Notation throughout this paper, such as l2„, follows [5]

wherever possible.)

We show below that the strong form of the maximum modulus

theorem always holds for a B-space X if and only if each point of

norm one is a "complex extreme point" of the unit sphere of X. In

particular, the theorem holds for strictly convex (i.e. rotund) spaces.

We also discuss geometrical conditions on the range of/ under which

the theorem holds for that /. Lastly, we discuss the theorem for

particular 5-spaces.

2. Complex extreme points. The notion of complex extreme point

is central to our results. To motivate it, recall that an extreme point e

of a convex set K, hereafter called a real extreme point, is one which

cannot be in the interior of a segment in K. That is, if e = ax + (1 — a)y

for 0<a<l, with x^y, then either x or y is not in K. Equivalently,

e is a real extreme point if it is not the midpoint of any segment in K.

Thus a real "disc" centered at e "sticks out of" K, no matter in which

direction it is tilted. By analogy we have the following.

Definition 2.1. A point e of a convex subset K of a complex B-

space X is a complex extreme point of K if {e+zy: \z\ :Sl}C-K

for y in X implies that y = 0.

Remarks. This is easily seen to be equivalent to requiring only

| z| =1, or even to requiring only that z= +1, +i. The set of complex

extreme points always contains the set of real extreme points for a
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convex set K. Thus the Krein-Mil'man theorem holds a fortiori for

the set of complex extreme points.

3. The strong form of the maximum modulus theorem.

Theorem 3.1. Let X be a complex Banach space such that each point

on the surface of the unit sphere is a complex extreme point of the unit

sphere. Then the strong form of the maximum modulus theorem holds,

i.e. for D a domain andf: D-^X an analytic function, either \f(z) | has

no maximum on D or f(z) is constant on D.

Conversely, if the surface of the unit sphere of X contains a point which

is not a complex extreme point of the sphere, then there is a nonconstant

analytic function f mapping the open unit disc into X yet satisfying

\f(z) | = 1 for all z in the disc.

Proof. For the converse, suppose that | x| = 1 and x is not a complex

extreme point. Choose y^O such that |x+zy| j£ 1 for all |z| ^1. If

|#+Zoy| <1 for some |z0| 2£1, we have |x| = (|x+z0y| + |x—z0y|)/2

< 1, a contradiction. Thus | x+zy | = 1 for all | z| g 1 and the function

f(z) =x+zy, \z\ <1, satisfies the requirements of the converse.

Now assume that every point on the unit sphere of X is a complex

extreme point of the unit sphere. Suppose / is an analytic map of a

domain D into X and that |/(z)| attains its maximum for some z

in D. Then, by the usual form of the theorem, |/(z)| =a, a constant,

for z in D. If a = 0, then/(z)=0 and so is constant. If a^O, f/a has

norm 1 in D so, to show/ is constant, we may suppose that |/(z) | = 1

for z in D. By the identity theorem, it is enough to show that / is

constant in some neighborhood in D, and by a change of variable,

we may suppose that the neighborhood is the interior of the unit

disc. So Theorem 3.1 follows directly from Theorem 3.2, below.

Theorem 3.2. Let f be an analytic function mapping the interior of

the unit disc into a complex B-space X and suppose that \f(z) \ = 1 for

\z\ <1. Iff(0) is a complex extreme point of the unit sphere in X, then

f(z) is constant for \z\ <1.

Note that Theorem 3.2 remains true when/(0) is replaced by/(z),

an arbitrary point in the range of/. This follows readily from a change

of variable and the identity theorem.

The proof of Theorem 3.2 depends on the next lemma.

Lemma 3.3. Let D be a domain in the complex plane, X a complex

B-space, andf: Z>—>A" an analytic function with \f(z) \ = 1 for all z in D.

Then for each point y in cl(co f(D)), the closed convex hull of the range

of f, we have \y\ =1.
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Proof. Let y be in co(/(D)). Then there are positive numbers

ai, • ■ ■ , an with ^ai=\ and points Zi, • • • , z„ in D such that

y= 2Za,/(zi)- By the Hahn-Banach theorem there is a continuous

linear functional x* of norm one with x*(/(zO) = l. Since |x*(f(z))|

^ | x* | |/(z) | = 1 for all z in D, x*/ is an analytic function on D which

attains its maximum at Zi. From the classical maximum modulus

theorem x*/(z) = 1 on D. Thus x*(y) = ^atx*/(z<) = 1 which implies

that |y| =il. Since |y| 5| 2Ia''l/(z»')| =1> j3/1 = 1 - It follows at once
that cl(co /(D)) also consists of points of norm 1, which completes

the proof.

Recall that a Banach space is strictly convex (also called rotund)

if and only if each point on the surface of the unit sphere is a real

extreme point. Corollary 3.4 will follow at once when we complete

the proof of Theorem 3.1. But we point out now an immediate direct

proof.

Corollary 3.4. Let Xbea strictly convex complex B-space. The strong

form 0/ the maximum modulus theorem holds /or analytic /unctions with

values in X.

Proof. Use Lemma 3.3 and the fact that a convex set which lies

on the surface of the unit sphere in a strictly convex space must con-

sist of one point.

Proof of Theorem 3.2. Let D= {z: \z\ <l}. Write/(z) =xo+g(z)

where g(0) =0. We have cl(co/(7>)) =x0+cl(co g(D)) and cl(co g(D))

= {y^Jaig(zi): ZiED, o,-^0 and X^a«'=l}- The condition ^at=l

can be replaced by ^2iai= 1 because 0 is in g(D).

The method of proof is to assume that /(0) is a complex extreme

point. We then show that g is zero by supposing that g is not zero

and then finding a nonzero element w in cl(co g(D)) with the property

that zw is in cl(co g(T>)) for | z| <r^0. By Lemma 3.3 it then follows

that Ixo+zrwl =1 for all z with |z| <1, and this contradicts the

assumption that/(0)=xo is a complex extreme point of the unit

sphere in X.

Since g is analytic we can write g(z) = Xln-i c«z"> f°r IA <*> where

the c„ are in X [6, p. 97]. We suppose that c„t is the first nonzero

coefficient of g(z). Let Wi, w2, • ■ ■ , w„0 be the w0th roots of unity.

For |z| <1 and any determination of z1/n0 we have

1     "0
— H g(zlln"wt) = cnoz + C2n0Z2 + • • • = g0(z).
n0 i=i

For simplicity we set g0(z) = ]CfT=i bnzn for | z| < 1. The function g0 is
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analytic since it has a convergent power series expansion, and go(z)

is in co(g(D)) for z in D, so cl(co go(-D))Ccl(co g(D)). The proof of

Theorem 3.2 will thus be complete if we can show that biz is in

co go(D) for I z| sufficiently small. To do this we need the next lemma.

Lemma 3.5. There is a constant M such that for each integer n we can

find complex numbers zi, ■ ■ ■ , zn with

(i)   \zt\ <Mfori=l,2, ■•-,«,
(ii)  (l/»)Z?-iZ. = l,
(iii)  (l/»)£f"-i*? = 0, P = 2, 3, • ■ •,».

Proof. For a polynomial x"+dixn_1+ • • • +an with roots rx, • • • ,

rn, let Rp= 22"=i(ry)pi P = l> 2, • ■ ■ . Newton's identities are [8,

pp.  260-262]:

Ri = — «i

R2 + aiRi = — 2 a2

Rn + aiRn-i + • • • + an-iRi = — nan.

From these identities we see that the polynomial

n2 (— l)nnn
Qnix) = xn — nxn~l H-xn-2 — • • • H-

2! »!

has roots zu z2, ■ • • , zn which satisfy (ii) and (iii) above. We write

Qnix)=x" zZv=o(-n/x)p/pl ]■ D. Buckholtz points out that if

M = 3.5911 ■ ■ ■ is the number which satisfies M log M=M+1,

then for \z\ ^1/M, \zex~z\ ^1 and |z| ^1 and so by theorem 2 of

[2], (see also [3]) zZl-o(nz)p/p\?±Q. Thus the roots zlt • • • , zn of

Qn must have modulus less than M, which completes the proof

of Lemma 3.5.

We now use Lemma 3.5 to complete the proof of Theorem 3.2.

Given n, choose Zi, • • ■ , z„ as in Lemma 3.5. Then for |z| <1/M,

1      w oo        Pi      n ~|

— 22 go(zzi) = biz + 22   — 22z™ Om^.
n   ,-=1 m~n+l L n   i=l       J

The left side is in coigoiD)) and differs from &iz by a vector of norm

less than or equal to

00

e m \zm\».
m=n+l

Since the power series expansion for g(z) converges absolutely for
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|z| <1 [6, Theorem 3.11.4], the same is true of go(z) and we get

Hm„,w ]Cm=„+i|M \Mz\m = 0, for all z with |z| <\/M. Hence bxz is

in cl(co go(T>)) for |z| <\/M and, as we have seen above, this com-

pletes the proof of Theorem 3.2.

4. The theorem in particular 7J-spaces. We have reduced the study

of strong form of the maximum modulus theorem in any given space

to the study of the complex extreme points of the unit sphere of that

space.

In strictly convex spaces, such as LV(S, 2, ^t), \<p<<x>, every

point on the unit sphere is real extreme so the notions of real and

complex extreme points coincide. They also coincide in sup norm

spaces. For example, in BC(S), the set of bounded continuous com-

plex valued functions on an arbitrary topological space 5, (a continu-

ous) / is real or complex extreme if and only if \/(s) \ = 1 for all s in 5.

The same characterization holds in LX(S, 2, p) with equality taken

a.e. The strict convexity of the complex disc shows such / are real

extreme points. That other / are not complex extreme is obvious

in LK. To see that they are not in BC(S), suppose |/| =1 but

\/(s) | < 1 for some s. Then g(s) = 1 — \/(s) | is not identically zero and

\/(s)+zg(s)\ g |/(5)|+1-|/(5)| =1 for all 5 in 5 and all z in the

closed unit disc so/ is not complex extreme.

Though the notions of real and complex extreme points often coin-

cide, allowing the easier Corollary 3.4 to settle the problem of the

strong form of the maximum modulus theorem, the notions differ

significantly in the case of 7i(5, 2, p), as we show below in Theorem

4.2.

Lemma 4.1. Let (S, 2, p) be a measure space. For / in Li(S, 2, p),

let S(/) = {s in S:/(s)^0}. For /and gin 7i(5,2, p), |/+g| =|/|+|g|

i/ and only i//=hg a.e. on S(/)r^S(g) and h(s)>0/or sES(/)C\S(g).

Proof. Since /s(\/\ +|g| - |/+g| )dp = 0 we have \f(s)+g(s)\

= \/(s)\ +\g(s)\ a.e. and an elementary calculation with complex

numbers now shows that /(s) =h(s)g(s) a.e. on S(f)r^S(g), h(s)>0:

letting /(s) = h(s)g(s), 11 +h(s) | | g(s) | = | g(s) +/(s) | = | g(s) | + \/(s) |

= (1 +1 h(s) |) | g(5) |. Thus 11 +h(s) |=1 + | h(s) | since g(s) ̂ 0 and we

see that h(s) = \h(s)\ >0 for 5 in S(/)r\S(g).

The sufficiency is clear.

Theorem 4.2. Every point on the sur/ace o/ the unit sphere o/

Li(S, 2, p) is a complex extreme point.

Proof. Suppose that / and g are in 7>i(5, 2, p) with |/| = 1 and

|/+zg| =■ 1 for all | z| g 1. As in the beginning of the proof of Theorem
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3.1,   |/+zg|=l  for all   |z|=l.  Note further that Sig)ESif)VJN
with piN) =0. To see this,

2 = 2r i/i = r i/+g| + \f-g\

=  f     |/+«|+ |/-«|   +2 f U|

=   f |/+*l  + \f-i\   =2.

Thus fss(n\g\ =0.
-Write /=(/+zg)/2 + (f-zg)/2 and note that |/|=|/+**|/2

+ |/—zg|/2, and applying Lemma 4.1 we can find for each z a func-

tion hz so that we have (f+zg)/2=hz(f—zg)/2 with hzis) >0, true a.e.

on S(f-zg)r\S(f+zg). Then zg=(k-l)//(A + l) a.e. there. Let

sgn(/-(s))=cl(/(X>)/|/(*)| if/f»*0 and sgn(/(5))=0 if f(s)=0. We
then have zg sgn /= (hz— l)\f\/(h, + l). The equation holds for all

complex z with |z| <1 and the right side is real. The equation for

each z is valid only for s in Sif—zg)C\Sif+zg), but by taking z suffi-

ciently small it follows that g sgn/=0 a.e. on Sif), that is that g = 0

a.e. on Sif). But g is zero a.e. on the complement of the support of/,

and this completes the proof.

Suppose that/ is in Li(5, 2, p) with norm one and g is in LiiS, 2, p)

with |/+ g\ gl. Then |/+c*g| gl for — lgagl and as in the proof

of Theorem 4.2, g sgn / is real, g vanishes outside the support of /

and |/ sgn f+g sgn f\ g 1. So we see that/ is a real extreme point in

LiiS, 2, p) if and only if / sgn/= [/(•) | is a real extreme point in real

LiiS, 2, p). The extreme points in real Li(5, S, p) are characterized

[4, p. 81] as exactly those functions of the form + CA/piA), where A

is an atom in 2 and Ca is the characteristic function of A.

In particular, the complex Banach space Z,(0, 1) has a unit sphere

with no real extreme points but whose surface consists entirely of

complex extreme points.

Our earlier remarks on BCiS) and LxiS, 2, p), in conjunction with

Theorem 4.2, show us that the complex spaces L„iS, 2, p) and

LiiS', 2', p') are never congruent (unless both are one-dimensional).

If BCiS) has a continuous function / with |/(s)| not constant, then

we may conclude that complex BC(S) and Li(5', 2, p) are likewise

never congruent (unless both are one-dimensional).

If ikf is a subspace of X then any extreme point of Sx which is in

M is also an extreme point of Sm- Thus if the strong form of the
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maximum modulus theorem holds for X it holds for all spaces congru-

ent to subspaces of X. In the preceding paragraph, 7i(5, 2, p) can

be replaced by any subspace thereof. In particular, the complex two-

dimensional Banach space l2a is not congruent to any subspace of

complex 7(0, 1). In contrast Lindenstrauss has shown in [7] that

every real two-dimensional Banach space is congruent to a subspace

of real 7(0, 1). If X = Xi® • ■ ■ ®Xn, where

|x|    =   (|*i|» +   •  •  •  +   \xn\p)llp, 1   g p   <   oo,

defines the norm for x = (xi, ■ ■ ■ , xn), note that a point is com-

plex extreme for Sx{ if and only if it is complex extreme when con-

sidered as a point of Sx- For suppose x is extreme in, say, 5r,. Then

|*+z(yi. ■ • • . Jn)\ =T implies | x+zyx| p+ | zy2| p+ ■ ■ ■ +|zy„|p^l

for |z|:gl. But since x is complex extreme in 5x„ yi = 0, and

|x+zyi| =1, whence y2= • • • =y„ = 0. Thus x is complex extreme

in Sx.

A rather different discussion of maximum modulus theorems

appears in [l]. An easy example given there shows that the strong

form of the maximum modulus theorem fails for 73(77), the set of

bounded operators on a Hilbert space (of two or more dimensions).
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