References

1. S. Ya. Havinson, On some extremal problems in the theory of analytic functions, Amer. Math. Soc. Transl. (2) 32 (1963), 139-154.
2. W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math. 90 (1953), 287-318.

University of Michigan

POSITIVE $H^{1 / 2}$ FUNCTIONS ARE CONSTANTS

J. NEUWIRTH AND D. J. NEWMAN

The Koebe function $z /(1+z)^{2}$ is positive everywhere on $|z|=1$, $z \neq-1$, and lies in the Hardy class H^{p} for every $p<1 / 2$. We show that this behavior is extreme by proving the following

Theorem. If $f(z) \in H^{1 / 2}$ and if $f(z) \geqq 0$ a.e. on $|z|=1$ then $f(z)$ is a constant.

Proof. We may assume that $f(z)$ is not identically 0 . If $B(z)$ denotes the Blaschke product for the zeros of $f(z)$ then, as usual, we can write

$$
\begin{equation*}
f(z)=B(z) F^{2}(z), \quad F(z) \in H^{1} \tag{1}
\end{equation*}
$$

We write the condition $f(z) \geqq 0$ as the equation $f(z)=|f(z)|$ and conclude from (1) that

$$
\begin{equation*}
B(z) F^{2}(z)=\left|F^{2}(z)\right| \quad \text { a.e. on }|z|=1 . \tag{2}
\end{equation*}
$$

Since $f(z)$ is not identically 0 it follows that $F(z)$ is nonzero a.e. on $|z|=1$. Thus we may divide (2) by $F(z)$ and obtain

$$
\begin{equation*}
B(z) F(z)=\overline{F(z)} \quad \text { a.e. on }|z|=1 \tag{3}
\end{equation*}
$$

But the left side of (3) is H^{1} and so has all negative Fourier coefficients 0 , the right side is conjugate H^{1} and so has all positive Fourier coefficients 0 !.

Thus only the constant term remains and we conclude that both sides are constants. This is to say $B(z) F(z)$ and $F(z)$ are both constants and so indeed $f(z)=(B(z) F(z)) . F(z)$ is a constant.

University of Connecticut and
Yeshiva University
Received by the editors May 17, 1967.

