REFERENCE

1. N. Dunford and J. T. Schwartz, *Linear operators*, Vol. I, Interscience, New York, 1958.

WESTERN MICHIGAN UNIVERSITY

ON TYPE I C*-ALGEBRAS

SHÔICHIRÔ SAKAI1

1. **Introduction.** Recently, the author [4] proved the equivalence of type I C^* -algebras and GCR C^* -algebras without the assumption of separability. On the other hand, for separable type I C^* -algebras, we have a simpler criterion as follows: a separable C^* -algebra $\mathfrak A$ is of type I if and only if every irreducible image contains a nonzero compact operator.

It has been open whether or not this remains true when \mathfrak{A} is not separable (cf. [1], [2], [3]).

In the present paper, we shall show that a C^* -algebra $\mathfrak A$ is GCR if and only if every irreducible image contains a nonzero compact operator, so that by the author's previous theorem [4], the above problem is affirmative for arbitrary C^* -algebra.

2. Theorem. In this section, we shall show the following theorem.

THEOREM. A C*-algebra A is of type I if and only if every irreducible image contains a nonzero compact operator.

PROOF. Suppose that a C^* -algebra $\mathfrak A$ is of type I, then it is GCR and so every irreducible image contains a nonzero compact operator (cf. [1], [2], [3], [4]).

Conversely suppose that every irreducible image of $\mathfrak A$ contains a nonzero compact operator. It is enough to assume that $\mathfrak A$ has the unit I. We shall assume that $\mathfrak A$ is not of type I. Then it is not GCR; then there is a separable nontype I C^* -subalgebra $\mathfrak B$ of $\mathfrak A$ (cf. [2], [4]). Take a pure state ϕ on $\mathfrak B$ such that the image of $\mathfrak B$ under the irreducible *-representation $\{U_{\phi}, \mathfrak S_{\phi}\}$ of $\mathfrak B$ constructed via ϕ does not contain any nonzero compact operator, where $\mathfrak S_{\phi}$ is a Hilbert space.

Received by the editors September 12, 1966.

¹ This paper was written with partial support from ONR Contract NR-551(57).

Let \mathcal{E} be the set of all pure states ψ on \mathfrak{A} such that $\psi = \phi$ on \mathfrak{B} . We shall define a partial ordering \prec in \mathcal{E} in the following. Take $\psi \in \mathcal{E}$, and $\{\pi_{\psi}, \mathfrak{F}_{\psi}\}$ be the irreducible *-representation of \mathfrak{A} constructed via ψ , then $\pi_{\psi}(\mathfrak{A})$ contains a nonzero compact operator; hence $\pi_{\psi}(\mathfrak{A})$ contains the algebra $C(\mathfrak{F}_{\psi})$ of all compact operators (cf. [1]). Let $\mathfrak{D}(\psi) = \pi_{\psi}^{-1}(C(\mathfrak{F}_{\psi}))$, then $\mathfrak{D}(\psi)$ is an ideal of \mathfrak{A} . For $\psi_1, \psi_2 \in \mathcal{E}$, we shall define the order as follows: $\psi_1 \prec \psi_2$ if $\mathfrak{D}(\psi_1) \subset \mathfrak{D}(\psi_2)$. Let $\{\psi_{\alpha} \mid \alpha \in \Pi\}$ be a linearly ordered subset of \mathcal{E} , and let \mathfrak{D} be the uniform closure of $U_{\alpha \in \Pi} \mathfrak{D}(\psi_{\alpha})$, then \mathfrak{D} is an ideal of \mathfrak{A} . Let \mathfrak{F} be the kernel of the representation $\{\overline{U}_{\phi}, \mathfrak{F}_{\phi}\}$ of \mathfrak{B} . First of all we shall show that $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$. Suppose that $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$, then there is an element $b \in (\mathfrak{B} \cap \mathfrak{D}) \cap \mathfrak{F}^c$ and $b_n \in \mathfrak{D}(\psi_{\alpha n})$ for $n = 1, 2, 3, \cdots$ such that $\|U_{\phi}(b)\| = 1$ and $\|b - b_n\| < 1/n$ for $n = 1, 2, 3, \cdots$, where \mathfrak{F}^c is the complement of \mathfrak{F} in \mathfrak{B} .

Take the representation $\{\pi_{\psi_{\alpha n}}, \mathfrak{H}_{\psi_{\alpha n}}\}$ of \mathfrak{A} , then $\|\pi_{\psi_{\alpha n}}(b) - \pi_{\psi_{\alpha n}}(b_n)\| < 1/n$.

Let $[\pi_{\psi_{\alpha n}}(\mathfrak{B})I_{\psi_{\alpha n}}]$ be the closed subspace generated by $\pi_{\psi_{\alpha n}}(\mathfrak{B})I_{\psi_{\alpha n}}$, where $I_{\psi_{\alpha n}}$ is the image of I in $\mathfrak{F}_{\psi_{\alpha n}}$, and let E_n' be the orthogonal projection of $\mathfrak{F}_{\psi_{\alpha n}}$ onto $[\pi_{\psi_{\alpha n}}(\mathfrak{B})I_{\psi_{\alpha n}}]$. Then the representation $y \to \pi_{\psi_{\alpha n}}(y)E_n'$ for $y \in \mathfrak{B}$ is equivalent to $\{U_{\phi}, \mathfrak{F}_{\phi}\}$.

On the other hand, $||E_n'\pi_{\psi_{\alpha n}}(b)E_n'-E_n'\pi_{\psi_{\alpha n}}(b_n)E_n'|| < 1/n$, and $E_n'\pi_{\psi_{\alpha n}}(b_n)E_n'$ is a compact operator on $E_n'\mathfrak{H}_{\psi_{\alpha n}}$. Hence, there is a compact operator T_n on \mathfrak{H}_{ϕ} such that $||U_{\phi}(b)-T_n|| < 1/n$, because $E_n'\pi_{\psi_{\alpha n}}(b)E_n'=\pi_{\psi_{\alpha n}}(b)E_n'$. Therefore, $U_{\phi}(b)$ is a nonzero compact operator on \mathfrak{H}_{ϕ} ; this is a contradiction and so $\mathfrak{B} \cap \mathfrak{D} \subset \mathfrak{F}$.

Next, let us consider a C^* -algebra $\mathfrak{A}/\mathfrak{D}$, then $\mathfrak{B}+\mathfrak{D}/\mathfrak{D}$ is a C^* -subalgebra of $\mathfrak{A}/\mathfrak{D}$, because every *-homomorphic image of a C^* -algebra into another C^* -algebra is closed and the mapping $x \to x + \mathfrak{D}(x \in \mathfrak{B})$ of \mathfrak{B} into $\mathfrak{A}/\mathfrak{D}$ is *-homomorphic.

The state ϕ on \mathfrak{B} can be canonically considered a pure state on $\mathfrak{B}+\mathfrak{D}/\mathfrak{D}$, because $\mathfrak{B}\cap\mathfrak{D}\subset\mathfrak{F}$ and the C^* -algebra $\mathfrak{B}+\mathfrak{D}/\mathfrak{D}$ is *-isomorphic to the C^* -algebra $\mathfrak{B}/\mathfrak{B}\cap\mathfrak{D}$. Take a pure state extension $\tilde{\phi}$ of ϕ to $\mathfrak{A}/\mathfrak{D}$, then we can define a pure state ψ of \mathfrak{A} by $\psi(y)=\tilde{\phi}(y+\mathfrak{D})$ for $y\in\mathfrak{A}$. Then we have $\psi=\phi$ on \mathfrak{B} and so $\psi\in\mathcal{E}$.

Clearly $\mathfrak{D}(\psi_{\alpha})\subset\mathfrak{D}(\chi)$; hence $\psi_{\alpha}\prec\psi$, and so by Zorn's lemma \mathcal{E} contains a maximal element ψ_0 .

Now we shall show $\mathfrak{D}(\psi_0) \cap \mathfrak{B} \subset \mathfrak{F}$. Assume that $\mathfrak{D}(\psi_0) \cap \mathfrak{B} \subset \mathfrak{F}$, then by the analogous discussion with the above, ϕ can be canonically considered a pure state on a C^* -subalgebra $\mathfrak{B} + \mathfrak{D}(\psi_0)/\mathfrak{D}(\psi_0)$ of $\mathfrak{A}/\mathfrak{D}(\psi_0)$; therefore we can have a pure state ψ_β on \mathfrak{A} such that $\psi_\beta(\mathfrak{D}(\psi_0)) = 0$ and $\psi_\beta = \phi$ on \mathfrak{B} ; hence $\mathfrak{D}(\psi_\beta) \not\supseteq \mathfrak{D}(\psi_0)$, a contradiction.

On the other hand, $\mathfrak{D}(\psi_0) \cap \mathfrak{B} \subset \mathfrak{F}$ also implies a contradiction, be-

cause $\pi_{\psi_0}(b)$ is a compact operator on \mathfrak{F}_{ψ_0} for some $b \in (\mathfrak{D}(\psi_0) \cap \mathfrak{B})$ $\cap \mathfrak{F}^c$; hence $\pi_{\psi_0}(b)E'$ is compact, where E' is the orthogonal projection of \mathfrak{F}_{ψ_0} onto $[\pi_{\psi_0}(\mathfrak{B})I_{\psi_0}]$; hence $U_{\phi}(b)=0$ and so $b \in \mathfrak{F}$.

Hence we can conclude that $\mathfrak A$ is of type I. This completes the proof.

REFERENCES

- 1. J. Dixmier, Les C*-algebres et leurs representations, Gauthier-Villars, Paris, 1964.
 - 2. J. Glimm, Type I C*-algebras, Ann. of Math. 73 (1961), 572-612.
- 3. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
- 4. S. Sakai, On a characterization of type I C*-algebras, Bull. Amer. Math. Soc. 72 (1966), 508-512.

University of Pennsylvania