ANOTHER THEOREM ON BOUNDED ANALYTIC FUNCTIONS ## JEAN-PIERRE KAHANE This note is an attempt to solve the conjecture stated at the end of the preceding paper [1]. We are able to prove the following. THEOREM 1. Let $\{\phi_n\}$ be a sequence of summable functions on the circle such that $$l(f) = \lim_{n \to \infty} \int f \phi_n$$ exists for all $f \in H^{\infty}$ (space of bounded functions on the circle with a positive spectrum; the integral is taken over the circle). Then there is a $\phi \in L^1$ such that $$l(f) = \int f\phi$$ for all $f \in A$ (space of continuous functions on the circle with a positive spectrum). PROOF. As in [1] we see first that there exists a measure $d\mu$ on the circle such that $l(f) = \int f d\mu$ whenever $f \in A$. Let us prove that $d\mu$ is absolutely continuous. Suppose that $d\mu$ is not absolutely continuous. Let E be a closed set on the circle, with Lebesgue measure zero, such that $\int_E d\mu = \mu(E) \neq 0$. Let h be a function in A such that h=1 on E and |h| < 1 outside (the existence of such a function is well known; it is used also in [1]). We have the following equalities $(m=1, 2, \dots; n=1, 2, \dots)$: - (1) $\lim_{m\to\infty}\int h^m d\mu = \mu(E)$, - (2) $\lim_{m\to\infty}\int h^m\phi_n=0$ for all n's, - (3) $\lim_{n\to\infty} \int h^m \phi_n = \int h^m d\mu$ for all m's. If the sequence m_j is rapidly increasing (meaning that m_{j+1} is sufficiently large when m_j is given), we have $$f = \sum_{j=1}^{\infty} (-1)^{j} h^{m_j} \in H^{\infty}.$$ For, given m_j , we define E_j as the set where $|h^{m_j}-1| < 2^{-j}$, and we have $|h^{m_{j+1}}| < 2^{-j}$ on CE_j when m_{j+1} is large enough. We shall write L_1 for this condition on the m_j . Received by the editors July 10, 1966. We shall define by induction two sequences m_j (satisfying L_1) and n_j . We shall use the formula $$\int f\phi_{n_j} = \sum_{k=1}^{j-1} (-1)^k \int h^{m_k}\phi_{n_j} + (-1)^j \int h^{m_j}\phi_{n_j} + \sum_{k=j+1}^{\infty} (-1)^k \int h^{m_k}\phi_{n_j}$$ $$= A_j + B_j + C_j.$$ We write L_2 for the condition $$\sum_{k=i+1}^{\infty} \left| \int h^{m_k} \phi_{n_j} \right| < \frac{1}{12} \mid \mu(E) \mid ;$$ by (2), it is satisfied when m_{j+1} , m_{j+2} , \cdots are chosen large enough, n_j being given. We write L_3 for the condition $$\left|\int h^{m_j} d\mu\right| > \frac{11}{12} \mid \mu(E) \mid ;$$ by (1), it is satisfied when m_j is large. Now suppose that $m_1, \dots, m_{j-1}, n_1, \dots, n_{j-1}$ are given in such a manner that the conditions L_1, L_2, L_3 are satisfied at this stage. They will be satisfied at the following stage if m_j is sufficiently large, $m_j \ge m_j^*$, say. We define n_j^* so that $n \ge n_j^*$ implies $$|A_i - A_i^{\infty}| < |\mu(E)|/12,$$ where $$A_j^{\infty} = \sum_{k=1}^{j-1} (-1)^k \int h^{m_k} d\mu;$$ that is possible because of (3). Now we consider two cases, namely (a) $$|A_{j-1}+B_{j-1}-A_j^{\infty}| \leq 5 |\mu(E)|/12$$, $$(\beta) | A_{j-1} + B_{j-1} - A_j^{\infty} | > 5 | \mu(E) | /12.$$ In the case (α) , we choose $m_j = m_j^*$, and n_j large enough $(\geq n_j^*)$ so that $|B_j| > 11 |\mu(E)| / 12$; that is possible because of (3) and L_3 . In the case (β) , we choose $n_j = n_j^*$, and m_j large enough $(\geq m_j^*)$ so that $|B_j| < |\mu(E)| / 12$; that is possible because of (2). In each case, we have $$|A_{i-1} + B_{i-1} - A_i - B_i| > 3 |\mu(E)| / 12.$$ Taking L_2 into account, we have $|C_{j-1}|$ and $|C_j|$ majorized by $|\mu(E)|/12$, and therefore $$\left| \int f \phi_{n_{j-1}} - \int f \phi_{n_j} \right| > \frac{1}{12} \mid \mu(E) \mid .$$ Therefore the sequence $\int f\phi_n$ is not convergent, against our assumption. The contradiction proves that $d\mu$ is absolutely continuous, that is $l(f) = \int f d\mu = \int f\phi$ whenever $f \in A$, for some $\phi \in L^1$. REMARK. If $\phi_n(t) = \sum_{k=-\infty}^{\infty} a_{n,k} e^{-ikt}$, the assumption of the theorem is the existence of $\lim_{n\to\infty} \sum_{0}^{\infty} a_{n,k} b_k$ for all $\sum_{0}^{\infty} b_k e^{ikt} \in H^{\infty}$. The conclusion is $\lim_{n\to\infty} a_{n,k} = \int \phi(\theta) e^{ik\theta}$ for some $\phi \in L^1$ $(k=0, 1, 2, \cdots)$. Theorem 1 of [1] follows as a particular case. We are not able to prove that $l(f) = \int f\phi$ for all $f \in H^{\infty}$. Nevertheless, this holds for many functions in H^{∞} . Precisely, we have THEOREM 2. Keeping the same notations as in Theorem 1, let D_l be the set of all $f \in H^{\infty}$ such that $l(f) = \int f \phi$, and let D be the intersection of the D_l for all l. Then (α) D_l is a closed subspace of H^{∞} and, given any $f \in H^{\infty}$, almost all translates of f belong to D_l . (g) f is a closed subalgebra of f invariant under translation; it contains all $f \in H^{\infty}$ such that $f \in H^{\infty}$ for some outer function $g \in D$; in particular, it contains all $f \in H^{\infty}$ which are continuous on the circle except on a closed set of measure zero. PROOF. We may suppose that the ϕ_n are trigonometric polynomials. By the Banach-Steinhaus theorem, the linear functionals $f \to \int f \phi_n$ are uniformly bounded on A. There exist measures $d\mu_n$, with bounded norms, such that $\int f \phi_n = \int f d\mu_n$ for all $f \in A$. By the F. and M. Riesz theorem (or another device) the $d\mu_n$ are absolutely continuous. Therefore we may suppose that the ϕ_n have bounded L^1 -norms. In order to prove (α) we may suppose $\phi = 0$. The fact that D_l is a closed subspace of H^{∞} is obvious. Given $f \in H^{\infty}$, we write $f_s(t) = f(t-s)$. Given $\psi \in L^1$, we have $f * \psi \in A$, and by Theorem 1 $$\lim_{n\to\infty}\int\int \phi_n(t)f(t-s)\psi(s)dsdt=0.$$ By assumption $$\lim_{n\to\infty}\int \phi_n(t)f(t-s)dt=l(f_s)$$ and since the ϕ_n have bounded L^1 -norms, the integrals $\int \phi_n(t) f(t-s) dt$ are uniformly bounded with respect to n and s. By the Lebesgue theorem $$\int l(f_{\bullet})\psi(s)ds=0$$ and since ψ is an arbitrary function in L^1 , $l(f_*) = 0$ for almost every s. That proves (α) . In order to prove (β) we write $$\lim_{n\to\infty} \int fg\phi_n = l_f(g) = l_g(f) = l(fg) \qquad (f \in H^{\infty}, g \in H^{\infty}),$$ $$l_f(g) = \int g\phi_f \quad \text{when } g \in D.$$ We have $A \subset D$ as a reformulation of Theorem 1. Suppose $f \in A$. Taking $g \in A$, we have $fg \in A$. Since $fg \in D$ and $g \in D$, we have (4) $$\int fg\phi = l(fg) = l_f(g) = \int g\phi_f,$$ $$\int g(f\phi - \phi_f) = 0$$ and since g is arbitrary in A, $f\phi = \phi_f \pmod{H'_0}$ (meaning that the Fourier coefficients or order ≤ 0 are the same). Now suppose $g \in D$. Taking $f \in A$ we have (6) $$l(fg) = l_f(g) = \int g\phi_f = \int fg\phi$$ since $f\phi = \phi_l \pmod{H'_0}$. Therefore $fg \in D_l$ and, l being arbitrary, $fg \in D$. Since $fg \in D$ and $g \in D$, we have $$\int f(g\phi-\phi_g)=0$$ and since f is arbitrary in A, $g\phi = \phi_g \pmod{H'_0}$. If $f \in D$ and $g \in D$, we still have (6) because $f\phi = \phi_f \pmod{H'_0}$, and $fg \in D$ as a consequence. Therefore D is a subalgebra of H^{∞} . It is closed because each D_l is closed, and it is obviously invariant under translation. Finally, suppose that $f \in H^{\infty}$, $g \in D$, g is an outer function and $fg \in D$. We still have (4) and (5). Moreover, since D is an algebra, we have $$\int gh(f\phi-\phi_f)=0$$ for all $h \in D$. Therefore $g(f\phi - \phi_f) = 0 \pmod{H'_0}$. Since g is an outer function, it follows that $f\phi = \phi_f \pmod{H'_0}$. As a conclusion $$l(f) = l_f(1) = \int \phi_f = \int f \phi,$$ that is, $f \in D_l$, and since l is arbitrary, $f \in D$. Given a closed set K of measure zero on the circle, there exists a continuous outer function g vanishing on K (that follows immediately from a proof of Fatou's theorem). If f is continuous except on K, $fg \in A$, therefore $f \in D$. That ends the proof of Theorem 2. ## REFERENCE 1. George Piranian, A. L. Shields and J. H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc. 18 (1967), pp., 818-826. University of Chicago and Faculte des Sciences d'Orsay