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This note is an attempt to solve the conjecture stated at the end of

the preceding paper [l ]. We are able to prove the following.

Theorem 1. Let {4>n} be a sequence of summable functions on the

circle such that

lij) = lim   f/*.
n—*<x>   «/

exists for allfEH°° ispace of bounded functions on the circle with a posi-

tive spectrum; the integral is taken over the circle). Then there is a (pEL1

such that

Kf) = ff<t>

for all fEA ispace of continuous functions on the circle with a positive

spectrum).

Proof. As in [l ] we see first that there exists a measure dp. on the

circle such that 1(f) = ffdp, whenever fEA. Let us prove that dp is

absolutely continuous.

Suppose that dp. is not absolutely continuous. Let £ be a closed set

on the circle, with Lebesgue measure zero, such that fs rfp = p(£) 5^0.

Let h be a function in A such that h = 1 on E and | h \ < 1 outside (the

existence of such a function is well known; it is used also in [l]). We

have the following equalities ivn = l, 2, ■ ■ ■ ;re = l, 2, • ■ • ):

(1) limn^fhmdp.=p.iE),

(2) liuu^,/ hm4>n = 0 for all re's,

(3) limn-*,} hmd>n=f hmd/j. for all m's.

If the sequence m, is rapidly increasing (meaning that ?rey+i is suffi-

ciently large when m^ is given), we have

CO

/= E(-LV«m''G#°°.
i-l

For, given m,, we define Ej as the set where | hm> — 1 j < 2~>, and we

have | hmfH | < 2~> on CEy when mi+i is large enough. We shall write Li

for this condition on the mj.
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We shall define by induction two sequences m, (satisfying Li) and

My. We shall use the formula

f fay = £ (-1)' f hm*<pni + (-1)' f h"i<pn. +   £   (-1)* f*H,.
J *-l J J fc-;'+l J

= Aj + Bj + Cj.

We write L2 for the condition

i: f h™*d>nj < — i m(£) i ;
k=j+i I •/ 12

by (2), it is satisfied when mj+i, Wy+j, • • • are chosen large enough,

My being given. We write L3 for the condition

fr-Mf/i   > — | m(F) I ;
I J 12

by (1), it is satisfied when ray is large. Now suppose that nti, ■ ■ ■ ,

mj-i, «i,---, Hj-i are given in such a manner that the conditions

Li, Li, Lz are satisfied at this stage. They will be satisfied at the fol-

lowing stage if ray is sufficiently large, mySira*, say. We define n* so

that n^nf implies

\A;-A~\   < I n(E) | /12,

where

A? = E(-l)* f h"*dv;
*=i J

that is possible because of (3). Now we consider two cases, namely

(a)   | Aj-i+Bj.i-A" | =g5 | „(£) | /12,

08)   | Aj-x+Bj-i- A" I >5 I n(E) | /12.
In the case (a), we choose ray = ra*, and My large enough (=£m*) so that

| Bj\ > 111 p.(E) | /12; that is possible because of (3) and L3. In the case

ij3), we choose My = M*, and my large enough  (^m*) so that |5y|

< | /x(£) | /12; that is possible because of (2). In each case, we have

| Aj-i + 5y_, - Aj - Bi |   > 3 | M(£) I /12.

Taking L2 into account, we have |Cy_i| and | Cy| majorized by

|joi(£)|/12, and therefore
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Therefore the sequence ff4>n is not convergent, against our assump-

tion. The contradiction proves that dp. is absolutely continuous, that

is lij) =ffdp.=ff(p whenever fEA, for some (pELx.
Remark. If d>nit) = zZt--"an,ke~<ht, the assumption of the theorem

is the existence of limB^„ zZoa», kbk for all zZobkeiktEH™. The conclu-

sion is limn^x,an,k= f (f>iO)eiki tor some (pEL1 (k = 0, 1, 2, • • • ). Theo-

rem 1 of [l ] follows as a particular case.

We are not able to prove that lif) =ff(j> for all fEH™. Neverthe-

less, this holds for many functions in H™. Precisely, we have

Theorem 2. Keeping the same notations as in Theorem 1, let Dt be the

set of allfEHx such that lif) = ff(j>, and let D be the intersection of the
Di for all I. Then (a) Di is a closed subspace of H™ and, given any

fEH™, almost all translates off belong to Di. (/3) D is a closed subalgebra

of H™, invariant under translation; it contains allf EH™ such that fgED

for some outer function gED; in particular, it contains all fEH^which

are continuous on the circle except on a closed set of measure zero.

Proof. We may suppose that the d>n are trigonometric polynomials.

By the Banach-Steinhaus theorem, the linear functionals/—»//(/>„ are

uniformly bounded on A. There exist measures dp,n, with bounded

norms, such that ffd>n=ffdun for all fEA. By the F. and M. Riesz
theorem (or another device) the d\in are absolutely continuous. There-

fore we may suppose that the (pn have bounded Z^-norms.

In order to prove (a) we may suppose fp = 0. The fact that Di is a

closed subspace of H™ is obvious. Given/G-£F°, we write/a(0 =fit — s).

Given ypELx, we havef*x[/EA, and by Theorem 1

lim   I   I  d>nit)fit — s)^is)dsdt = 0.

By assumption

lim    f (finiDfH - s)dt = lif.)
n—►«  J

and since the <p„ have bounded Z^norms, the integrals f(j>nit)fit — s)dt

are uniformly bounded with respect to re and s. By the Lebesgue

theorem

flif.)+is)ds = 0

and since ^ is an arbitrary function in L1, /(/,) = 0 for almost every s.

That proves (a).
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In order to prove (B) we write

lim   f fgd>n = l,(g) = la(f) = l(fg)        (f EH",gE H"),

hig) = J g4>f       when g E D.

We have A ED as a reformulation of Theorem 1.

Suppose/£yl. Taking gEA, we havefgEA. Since fgED and gED,
we have

(4) J rgtf = /(/«) = hig) = / ffc,

(5) j g(fd> -4>f) = 0

and since g is arbitrary in A, fd>=<bf (mod i?o)  (meaning that the

Fourier coefficients or order gO are the same).

Now suppose gED. Taking fEA we have

(6) Kfg) = lt(g) = f g<kr = f fg*

since /<£=$/(mod H'0). Therefore fgEDi and,  I being arbitrary,

fgED. Since fgED and gED, we have

JV(«* - *.) = 0
and since/is arbitrary in A, g<b=<t>a (mod flj)-

If /ED and gED, we still have (6) because f<b=4>j (mod Hq), and

fgED as a consequence. Therefore Z? is a subalgebra of H™. It is closed

because each Di is closed, and it is obviously invariant under transla-

tion.

Finally, suppose that fEH"', gED, g is an outer function and

fgED. We still have (4) and (5). Moreover, since D is an algebra, we

have

j gh(f4> -4>f) = 0

for all hED. Therefore g(fd>— </>/)= 0 (mod Hq). Since g is an outer

function, it follows that/<£=<£/ (mod H'0). As a conclusion
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*(/)-«!)-/* = //*,

that is, /EDi, and since / is arbitrary, /ED.

Given a closed set K of measure zero on the circle, there exists a

continuous outer function g vanishing on K (that follows immediately

from a proof of Fatou's theorem). If / is continuous except on K,

/gEA, therefore/ED. That ends the proof of Theorem 2.
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