ANOTHER THEOREM ON BOUNDED ANALYTIC FUNCTIONS

JEAN-PIERRE KAHANE

This note is an attempt to solve the conjecture stated at the end of the preceding paper [1]. We are able to prove the following.

THEOREM 1. Let $\{\phi_n\}$ be a sequence of summable functions on the circle such that

$$l(f) = \lim_{n \to \infty} \int f \phi_n$$

exists for all $f \in H^{\infty}$ (space of bounded functions on the circle with a positive spectrum; the integral is taken over the circle). Then there is a $\phi \in L^1$ such that

$$l(f) = \int f\phi$$

for all $f \in A$ (space of continuous functions on the circle with a positive spectrum).

PROOF. As in [1] we see first that there exists a measure $d\mu$ on the circle such that $l(f) = \int f d\mu$ whenever $f \in A$. Let us prove that $d\mu$ is absolutely continuous.

Suppose that $d\mu$ is not absolutely continuous. Let E be a closed set on the circle, with Lebesgue measure zero, such that $\int_E d\mu = \mu(E) \neq 0$. Let h be a function in A such that h=1 on E and |h| < 1 outside (the existence of such a function is well known; it is used also in [1]). We have the following equalities $(m=1, 2, \dots; n=1, 2, \dots)$:

- (1) $\lim_{m\to\infty}\int h^m d\mu = \mu(E)$,
- (2) $\lim_{m\to\infty}\int h^m\phi_n=0$ for all n's,
- (3) $\lim_{n\to\infty} \int h^m \phi_n = \int h^m d\mu$ for all m's.

If the sequence m_j is rapidly increasing (meaning that m_{j+1} is sufficiently large when m_j is given), we have

$$f = \sum_{j=1}^{\infty} (-1)^{j} h^{m_j} \in H^{\infty}.$$

For, given m_j , we define E_j as the set where $|h^{m_j}-1| < 2^{-j}$, and we have $|h^{m_{j+1}}| < 2^{-j}$ on CE_j when m_{j+1} is large enough. We shall write L_1 for this condition on the m_j .

Received by the editors July 10, 1966.

We shall define by induction two sequences m_j (satisfying L_1) and n_j . We shall use the formula

$$\int f\phi_{n_j} = \sum_{k=1}^{j-1} (-1)^k \int h^{m_k}\phi_{n_j} + (-1)^j \int h^{m_j}\phi_{n_j} + \sum_{k=j+1}^{\infty} (-1)^k \int h^{m_k}\phi_{n_j}$$
$$= A_j + B_j + C_j.$$

We write L_2 for the condition

$$\sum_{k=i+1}^{\infty} \left| \int h^{m_k} \phi_{n_j} \right| < \frac{1}{12} \mid \mu(E) \mid ;$$

by (2), it is satisfied when m_{j+1} , m_{j+2} , \cdots are chosen large enough, n_j being given. We write L_3 for the condition

$$\left|\int h^{m_j} d\mu\right| > \frac{11}{12} \mid \mu(E) \mid ;$$

by (1), it is satisfied when m_j is large. Now suppose that $m_1, \dots, m_{j-1}, n_1, \dots, n_{j-1}$ are given in such a manner that the conditions L_1, L_2, L_3 are satisfied at this stage. They will be satisfied at the following stage if m_j is sufficiently large, $m_j \ge m_j^*$, say. We define n_j^* so that $n \ge n_j^*$ implies

$$|A_i - A_i^{\infty}| < |\mu(E)|/12,$$

where

$$A_j^{\infty} = \sum_{k=1}^{j-1} (-1)^k \int h^{m_k} d\mu;$$

that is possible because of (3). Now we consider two cases, namely

(a)
$$|A_{j-1}+B_{j-1}-A_j^{\infty}| \leq 5 |\mu(E)|/12$$
,

$$(\beta) | A_{j-1} + B_{j-1} - A_j^{\infty} | > 5 | \mu(E) | /12.$$

In the case (α) , we choose $m_j = m_j^*$, and n_j large enough $(\geq n_j^*)$ so that $|B_j| > 11 |\mu(E)| / 12$; that is possible because of (3) and L_3 . In the case (β) , we choose $n_j = n_j^*$, and m_j large enough $(\geq m_j^*)$ so that $|B_j| < |\mu(E)| / 12$; that is possible because of (2). In each case, we have

$$|A_{i-1} + B_{i-1} - A_i - B_i| > 3 |\mu(E)| / 12.$$

Taking L_2 into account, we have $|C_{j-1}|$ and $|C_j|$ majorized by $|\mu(E)|/12$, and therefore

$$\left| \int f \phi_{n_{j-1}} - \int f \phi_{n_j} \right| > \frac{1}{12} \mid \mu(E) \mid .$$

Therefore the sequence $\int f\phi_n$ is not convergent, against our assumption. The contradiction proves that $d\mu$ is absolutely continuous, that is $l(f) = \int f d\mu = \int f\phi$ whenever $f \in A$, for some $\phi \in L^1$.

REMARK. If $\phi_n(t) = \sum_{k=-\infty}^{\infty} a_{n,k} e^{-ikt}$, the assumption of the theorem is the existence of $\lim_{n\to\infty} \sum_{0}^{\infty} a_{n,k} b_k$ for all $\sum_{0}^{\infty} b_k e^{ikt} \in H^{\infty}$. The conclusion is $\lim_{n\to\infty} a_{n,k} = \int \phi(\theta) e^{ik\theta}$ for some $\phi \in L^1$ $(k=0, 1, 2, \cdots)$. Theorem 1 of [1] follows as a particular case.

We are not able to prove that $l(f) = \int f\phi$ for all $f \in H^{\infty}$. Nevertheless, this holds for many functions in H^{∞} . Precisely, we have

THEOREM 2. Keeping the same notations as in Theorem 1, let D_l be the set of all $f \in H^{\infty}$ such that $l(f) = \int f \phi$, and let D be the intersection of the D_l for all l. Then (α) D_l is a closed subspace of H^{∞} and, given any $f \in H^{\infty}$, almost all translates of f belong to D_l . (g) f is a closed subalgebra of f invariant under translation; it contains all $f \in H^{\infty}$ such that $f \in H^{\infty}$ for some outer function $g \in D$; in particular, it contains all $f \in H^{\infty}$ which are continuous on the circle except on a closed set of measure zero.

PROOF. We may suppose that the ϕ_n are trigonometric polynomials. By the Banach-Steinhaus theorem, the linear functionals $f \to \int f \phi_n$ are uniformly bounded on A. There exist measures $d\mu_n$, with bounded norms, such that $\int f \phi_n = \int f d\mu_n$ for all $f \in A$. By the F. and M. Riesz theorem (or another device) the $d\mu_n$ are absolutely continuous. Therefore we may suppose that the ϕ_n have bounded L^1 -norms.

In order to prove (α) we may suppose $\phi = 0$. The fact that D_l is a closed subspace of H^{∞} is obvious. Given $f \in H^{\infty}$, we write $f_s(t) = f(t-s)$. Given $\psi \in L^1$, we have $f * \psi \in A$, and by Theorem 1

$$\lim_{n\to\infty}\int\int \phi_n(t)f(t-s)\psi(s)dsdt=0.$$

By assumption

$$\lim_{n\to\infty}\int \phi_n(t)f(t-s)dt=l(f_s)$$

and since the ϕ_n have bounded L^1 -norms, the integrals $\int \phi_n(t) f(t-s) dt$ are uniformly bounded with respect to n and s. By the Lebesgue theorem

$$\int l(f_{\bullet})\psi(s)ds=0$$

and since ψ is an arbitrary function in L^1 , $l(f_*) = 0$ for almost every s. That proves (α) .

In order to prove (β) we write

$$\lim_{n\to\infty} \int fg\phi_n = l_f(g) = l_g(f) = l(fg) \qquad (f \in H^{\infty}, g \in H^{\infty}),$$

$$l_f(g) = \int g\phi_f \quad \text{when } g \in D.$$

We have $A \subset D$ as a reformulation of Theorem 1.

Suppose $f \in A$. Taking $g \in A$, we have $fg \in A$. Since $fg \in D$ and $g \in D$, we have

(4)
$$\int fg\phi = l(fg) = l_f(g) = \int g\phi_f,$$

$$\int g(f\phi - \phi_f) = 0$$

and since g is arbitrary in A, $f\phi = \phi_f \pmod{H'_0}$ (meaning that the Fourier coefficients or order ≤ 0 are the same).

Now suppose $g \in D$. Taking $f \in A$ we have

(6)
$$l(fg) = l_f(g) = \int g\phi_f = \int fg\phi$$

since $f\phi = \phi_l \pmod{H'_0}$. Therefore $fg \in D_l$ and, l being arbitrary, $fg \in D$. Since $fg \in D$ and $g \in D$, we have

$$\int f(g\phi-\phi_g)=0$$

and since f is arbitrary in A, $g\phi = \phi_g \pmod{H'_0}$.

If $f \in D$ and $g \in D$, we still have (6) because $f\phi = \phi_f \pmod{H'_0}$, and $fg \in D$ as a consequence. Therefore D is a subalgebra of H^{∞} . It is closed because each D_l is closed, and it is obviously invariant under translation.

Finally, suppose that $f \in H^{\infty}$, $g \in D$, g is an outer function and $fg \in D$. We still have (4) and (5). Moreover, since D is an algebra, we have

$$\int gh(f\phi-\phi_f)=0$$

for all $h \in D$. Therefore $g(f\phi - \phi_f) = 0 \pmod{H'_0}$. Since g is an outer function, it follows that $f\phi = \phi_f \pmod{H'_0}$. As a conclusion

$$l(f) = l_f(1) = \int \phi_f = \int f \phi,$$

that is, $f \in D_l$, and since l is arbitrary, $f \in D$.

Given a closed set K of measure zero on the circle, there exists a continuous outer function g vanishing on K (that follows immediately from a proof of Fatou's theorem). If f is continuous except on K, $fg \in A$, therefore $f \in D$. That ends the proof of Theorem 2.

REFERENCE

1. George Piranian, A. L. Shields and J. H. Wells, Bounded analytic functions and absolutely continuous measures, Proc. Amer. Math. Soc. 18 (1967), pp., 818-826.

University of Chicago and Faculte des Sciences d'Orsay