A NOTE ON CARTAN'S THEOREMS A AND B

YUM-TONG SIU

In this short note we show that Cartan's Theorem A is an easy consequence of Cartan's Theorem B (for both reduced and unreduced complex spaces).

Assume that Theorem B is true. Suppose \mathfrak{F} is a coherent analytic sheaf on a Stein space (X, \mathfrak{O}) and $x \in X$. Let \mathfrak{s} be the sheaf of germs of holomorphic functions vanishing at x. We have an epimorphism $\phi: \mathfrak{O}_x^p \to \mathfrak{F}_x$. Let $e_k = (0, \dots, 0, 1, 0, \dots, 0) \in \mathfrak{O}_x^p$, (the 1 is in the *k*th position, $1 \leq k \leq p$). Consider the exact sequence of sheaf-homomorphisms

(*)
$$0 \to \mathfrak{gF} \to \mathfrak{F} \xrightarrow{\psi} \mathfrak{F}/\mathfrak{gF} \to 0.$$

Since $(\mathfrak{F}/\mathfrak{s}\mathfrak{F})_{\psi} = 0$ for $y \neq x$, $(\psi \circ \phi) (e_k) \in (\mathfrak{F}/\mathfrak{s}\mathfrak{F})_x$ define sections $s_k \in \Gamma(X, \mathfrak{F}/\mathfrak{s}\mathfrak{F}), 1 \leq k \leq p$. Cartan's Theorem B implies that $H^1(X,\mathfrak{s}\mathfrak{F}) = 0$. From the exact cohomology sequence of (*) we conclude that ψ induces an epimorphism $\Gamma(X,\mathfrak{F}) \to \Gamma(X,\mathfrak{F}/\mathfrak{s}\mathfrak{F})$. There exist $f_k \in \Gamma(X,\mathfrak{F})$ such that $\psi(f_k) = s_k, 1 \leq k \leq p$. We claim that $(f_1)_x, \dots, (f_p)_x$ generate \mathfrak{F}_x . Take $u \in \mathfrak{F}_x$. Then $\phi(v) = u$ for some $v \in \mathfrak{O}_x^p$. $\psi(\phi(e_k) - (f_k)_x) = 0$ implies that $\phi(e_k) - (f_k)_x \in \mathfrak{s}_x \mathfrak{F}_x = \mathfrak{s}_x \phi(\mathfrak{O}_x^p) = \phi(\mathfrak{s}_x \mathfrak{O}_x^p)$. $\phi(e_k) - (f_k)_x = \phi(g_k)$ for some $g_k = (g_{k1}, \dots, g_{kp}) \in \mathfrak{s}_x \mathfrak{O}_x^p$, $1 \leq k \leq p$. det $(\delta_{kl} - g_{kl})_{1 \leq k \leq p}, 1 \leq k \leq p$. $u = \phi(v) = \sum_{k=1}^p \lambda_k \phi(e_k - g_k) = \sum_{k=1}^p \lambda_k (f_k)_x$. Theorem A is proved. Moreover, we have proved that the least number of elements of the stalk to generate the stalk. This gives us the following:

COROLLARY. Suppose Z is a subvariety in an open subset (G, \mathfrak{F}) of a complex number space. The set of points $\sigma(Z)$ of Z, at which Z is not an algebraic complete intersection, is a subvariety.

PROOF. Without loss of generality we can assume that G is Stein. Let the ideal-sheaf of Z be α . If Z is of pure codimension p, then

$$\sigma(Z) = \bigcap \left\{ \left\{ z \middle| z \in Z, \left(\sum_{i=1}^p \Im f_i \right)_z \neq \alpha_z \right\} \middle| f_1, \cdots, f_p \in \Gamma(G, \alpha) \right\}$$

Received by the editors March 13, 1967.

and hence is a subvariety. If $Z = \bigcup_q Z^q$ is the decomposition into pure dimensional subvarieties, where codim $Z^q = q$, then since at points not in $\sigma(Z)$, Z is pure dimensional, $\sigma(Z) = (\bigcup_q \sigma(Z^q)) \cup (\bigcup_{q \neq r} (Z^q \cap Z^r))$. Q.E.D.

Reference

1. R. C. Gunning and H. Rossi, Analytic functions of several complex variables Prentice-Hall, Englewood Cliffs, N. J., 1965.

PURDUE UNIVERSITY

ON THE MAGNITUDE OF x^n-1 IN A NORMED ALGEBRA

LAWRENCE J. WALLEN

In their work on topological near-rings, Beidleman and Cox¹ had occasion to prove the following theorem: If A is a linear transformation on C^n (with a norm $\|\cdot\|$) and if $\|A^n - I\| \leq \alpha$ for all n with $0 \leq \alpha < 1$, then A = I. Their proof consists in noting that A - I is nilpotent and then examining the Jordan form.

It is certainly natural to inquire whether this theorem extends to the case where A is a bounded linear transformation on a normed linear space, or is in a normed algebra. Below we give an extremely short proof that the theorem does extend.

THEOREM. If X is a normed algebra with 1 and $\alpha_n = ||x^n - 1||$ satisfies $\alpha_n = o(n)$ and $\liminf n^{-1}(\alpha_1 + \alpha_2 + \cdots + \alpha_{n-1}) = \beta < 1$, then x = 1. In particular x = 1 if $\alpha_n \leq \alpha < 1$.

PROOF. Write

$$(x-1) = \frac{x^n - 1}{n} + (x-1) \left[1 - \frac{1 + x + \dots + x^{n-1}}{n} \right]$$
$$= \frac{(x^n - 1)}{n} + \frac{(x-1)}{n} \left[(1-x) + (1-x^2) + \dots + (1-x^{n-1}) \right].$$

Hence $||x-1|| \leq [\alpha_n + ||x-1|| (\alpha_1 + \alpha_2 + \cdots + \alpha_{n-1})]/n$. Letting *n* tend to ∞ through a suitable sequence, we get $||x-1|| \leq \beta ||x-1||$ giving the result.

STEVENS INSTITUTE OF TECHNOLOGY

956

Received by the editors March 23, 1967.

¹ Private communication.