A NOTE ON CARTAN'S THEOREMS A AND B

YUM-TONG SIU

In this short note we show that Cartan's Theorem A is an easy consequence of Cartan's Theorem B (for both reduced and unreduced complex spaces).

Assume that Theorem B is true. Suppose \mathcal{F} is a coherent analytic sheaf on a Stein space (X, \mathcal{O}) and $x \in X$. Let \mathfrak{g} be the sheaf of germs of holomorphic functions vanishing at x. We have an epimorphism $\phi: \mathcal{O}_{x}^{p} \rightarrow \mathscr{F}_{x}$. Let $e_{k}=(0, \cdots, 0,1,0, \cdots, 0) \in \mathcal{O}_{x}^{p}$, (the 1 is in the k th position, $1 \leqq k \leqq p$). Consider the exact sequence of sheaf-homomorphisms

$$
\begin{equation*}
0 \rightarrow \mathfrak{G F} \rightarrow \mathfrak{F} \xrightarrow{\psi} \mathfrak{F} / \mathfrak{G F} \rightarrow 0 . \tag{}
\end{equation*}
$$

Since $(\mathcal{F} / \mathfrak{G F})_{y}=0$ for $y \neq x,(\psi \circ \phi)\left(e_{k}\right) \in(\mathcal{F} / \mathscr{G F})_{x}$ define sections $s_{k} \in \Gamma(X, \mathfrak{F} / \mathfrak{G F}), 1 \leqq k \leqq p$. Cartan's Theorem B implies that $H^{1}(X, \mathfrak{g F})$ $=0$. From the exact cohomology sequence of $\left(^{*}\right)$ we conclude that ψ induces an epimorphism $\Gamma(X, \mathscr{F}) \rightarrow \Gamma(X, \mathcal{F} / \mathfrak{g} F)$. There exist f_{k} $\in \Gamma(X, \mathcal{F})$ such that $\psi\left(f_{k}\right)=s_{k}, 1 \leqq k \leqq p$. We claim that $\left(f_{1}\right)_{x}, \cdots,\left(f_{p}\right)_{x}$ generate \mathscr{F}_{x}. Take $u \in \mathfrak{F}_{x}$. Then $\phi(v)=u$ for some $v \in \mathcal{O}_{x}^{p} . \psi\left(\phi\left(e_{k}\right)-\right.$ $\left.\left(f_{k}\right)_{x}\right)=0$ implies that $\phi\left(e_{k}\right)-\left(f_{k}\right)_{x} \in \mathfrak{g}_{x} \mathscr{F}_{x}=\mathscr{G}_{x} \phi\left(\mathcal{O}_{x}^{p}\right)=\phi\left(\mathfrak{G}_{x} \mathcal{O}_{x}^{p}\right) . \phi\left(e_{k}\right)$ $-\left(f_{k}\right)_{x}=\phi\left(g_{k}\right)$ for some $g_{k}=\left(g_{k 1}, \cdots, g_{k p}\right) \in g_{x} \mathcal{O}_{x}^{p}, \quad 1 \leqq k \leqq p$. $\operatorname{det}\left(\delta_{k l}-g_{k l}\right)_{1 \leq k \leqq p, 1 \leq l \leq p}$ is a unit in \mathcal{O}_{x}, where $\delta_{k l}=1 \in \mathcal{O}_{x}$ if $k=l$, and $\delta_{k l}=0 \in \mathcal{O}_{x}$ if $k \neq l . e_{1}-g_{1}, \cdots, e_{p}-g_{p}$ generate $\mathcal{O}_{x}^{p} . v=\sum_{k=1}^{p} \lambda_{k}\left(e_{k}-g_{k}\right)$ for some $\lambda_{k} \in \mathcal{O}_{x}, 1 \leqq k \leqq p$. $u=\phi(v)=\sum_{k=1}^{p} \lambda_{k} \phi\left(e_{k}-g_{k}\right)=\sum_{k=1}^{p} \lambda_{k}\left(f_{k}\right)_{x}$. Theorem A is proved. Moreover, we have proved that the least number of global sections required to generate a given stalk is the same as the least number of elements of the stalk to generate the stalk. This gives us the following:

Corollary. Suppose Z is a subvariety in an open subset (G, \mathfrak{H}) of a complex number space. The set of points $\sigma(Z)$ of Z, at which Z is not an algebraic complete intersection, is a subvariety.

Proof. Without loss of generality we can assume that G is Stein. Let the ideal-sheaf of Z be \mathfrak{Q}. If Z is of pure codimension p, then

$$
\sigma(Z)=\cap\left\{\left\{z \mid z \in Z,\left(\sum_{i=1}^{p} \mathscr{H} f_{i}\right)_{z} \neq \mathbb{Q}_{z}\right\} \mid f_{1}, \cdots, f_{p} \in \Gamma(G, Q)\right\}
$$

[^0]and hence is a subvariety. If $Z=U_{q} Z^{q}$ is the decomposition into pure dimensional subvarieties, where $\operatorname{codim} Z^{q}=q$, then since at points not in $\sigma(Z), Z$ is pure dimensional, $\sigma(Z)=\left(\bigcup_{q} \sigma\left(Z^{q}\right)\right) \cup\left(\bigcup_{q \neq r}\left(Z^{q} \cap Z^{r}\right)\right)$. Q.E.D.

Reference

1. R. C. Gunning and H. Rossi, Analytic functions of severab complex variables Prentice-Hall, Englewood Cliffs, N. J., 1965.

Purdue University

ON THE MAGNITUDE OF $x^{n}-1$ IN A NORMED ALGEBRA

LAWRENCE J. WALLEN

In their work on topological near-rings, Beidleman and Cox^{1} had occasion to prove the following theorem: If A is a linear transformation on C^{n} (with a norm $\|\cdot\|$) and if $\left\|A^{n}-I\right\| \leqq \alpha$ for all n with $0 \leqq \alpha<1$, then $A=I$. Their proof consists in noting that $A-I$ is nilpotent and then examining the Jordan form.

It is certainly natural to inquire whether this theorem extends to the case where A is a bounded linear transformation on a normed linear space, or is in a normed algebra. Below we give an extremely short proof that the theorem does extend.

Theorem. If X is a normed algebra with 1 and $\alpha_{n}=\left\|x^{n}-1\right\|$ satisfies $\alpha_{n}=o(n)$ and $\lim \inf n^{-1}\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n-1}\right)=\beta<1$, then $x=1$. In particular $x=1$ if $\alpha_{n} \leqq \alpha<1$.

Proof. Write

$$
\begin{aligned}
(x-1) & =\frac{x^{n}-1}{n}+(x-1)\left[1-\frac{1+x+\cdots+x^{n-1}}{n}\right] \\
& =\frac{\left(x^{n}-1\right)}{n}+\frac{(x-1)}{n}\left[(1-x)+\left(1-x^{2}\right)+\cdots+\left(1-x^{n-1}\right)\right] .
\end{aligned}
$$

Hence $\|x-1\| \leqq\left[\alpha_{n}+\|x-1\|\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n-1}\right)\right] / n$. Letting n tend to ∞ through a suitable sequence, we get $\|x-1\| \leqq \beta\|x-1\|$ giving the result.

[^0]: Received by the editors March 13, 1967.

