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1.1. Let yia„ be an infinite series, and let |X„} be an arbitrary

sequence of positive numbers tending to infinity with n, such^that

1 g X, < X2 <

We write

I* X

M*) = zZ ix - *»)*<*» =  I    (* ~ 0 dAxit),
K<* Jl

Ay,(x) =  ^x(x)  =   X «n»

A\(x) = 0       for x ^ 1    and    * > - 1.

We also write

B\ix) = zZ ix — A») Kan-
K<x

The series y^.a„ is said to be summable | R, X, k\m, k>0, «^1,

k>l-l/m, if

f   m_!     </      _*    * m
I    x       —x   -4>(x;    dx < oo.

J i Jx

The case X„ = w of this definition is given in [l] where it is shown

why the additional restriction k>l — 1/w is necessary.

The series X]a„ is said to be summable | A, X| m, mS? 1, if the series

f(x) ~ zZa" exP f— ̂ x] converges for x>0 and

/» 00

(1 - e-z)m-x | f'(x) \mdx < oo,

o

[8, Theorem 2].

It is easily seen that for m = l, summability \A, X|m and summa-

bility | R, X, k\ m are the same as summability | A, X| [9] and summa-

bility | R, X, k\ [2] respectively. Borwein [l] has shown that for

X„ = w summability \R, X, k\m of ^Za„ is equivalent to its absolute

Cesa.ro summability with index m.

1.2. Hyslop [6] has established the following Tauberian theorem

for absolute summability.
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Theorem A. //Za» is summable \A\ and ^A(«a„) is summable

| C, k +11, where k^O, then ^an is summable \ C, k\.

Flett [3] generalized Theorem A for index m and proved the fol-

lowing theorem.

Theorem B. Let m}±l, k> — 1. Ify,a„ « summable \A\m and if

also X)A(na„) is summable \C, k + I\m, then^2a„ is summable \ C, k\m.

The object of this paper is to obtain an analogue of Theorem B in-

volving the extended definitions of absolute Abel and absolute Riesz

summability referred to above as summability \A, X|m and summa-

bility \R, X, k\m.
I wish to express my appreciation to Professor D. Waterman for

his guidance during the preparation of this paper. I also thank the

referee for his valuable suggestions, especially Theorem 3.

2.1. We prove the following theorems.

Theorem 1. If (i) ^a„ is summable \ A, X | m, m ^ 1, then a necessary

and sufficient condition for the given series ^an to be summable | R, X, k | m

is that

(ii) fix1*-11 (d/dx)x-k-xBl(x)\mdx<°°, where k>l-l/m.

Theorem 2. If (i) x-1Bl(x) is of bounded variation in (0, 00) and

(ii) the series Za» exP [~^»*] is convergent for all x>0 and its sum

f(x) is of bounded variation in (0, 00), then Z°n i5 absolutely conver-

gent. Moreover, the conditions (i) and (ii) are also necessary for the abso-

lute convergence of ^,a„.

2.2. We require the following lemmas for the proof of our theorem.

Lemma 1 [5]. If k>0, then

d/dx(x   A\(x)) = kx      B\   (x).

Lemma 2 [2]. If f(x)= X)a„ exp [— \nx] converges for x>0, then

for k^O we have

/(*) =- I     Ak(t)e-"dt.
T(k + l)Jo

Lemma 3. For (i) Za« to oe summable | R, X, k\ m it is necessary and

sufficient that
(ii)   ^a„ be summable \ R, X, &-f-l | m and

(iii) f0"xm-1\(d/dx)x-k-1B*(x)\mdx<«>,  where m^l,  k>l-l/m.

Proof of Lemma 3. (a) Let m>l. Since v4*(a:)=0 for^^l, we write
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f   m-»     d     _*    k » /•"   -1    d     -k    t -
I    x       — x   /lx(x)    ax =  I    x       — x   j4\(x)    ax.

J0 dx J1 dx

We have

- (x"*"l^*+1(x)) = (* + Dx-^Alix) - (k + l)x"i-^*+1(x).
dx

Using Lemma 1, we get

(2.2.1) x   Ax(x) = x       AC ix) + x      Bx(x).

Therefore

f-   _!     a"      ̂      * - /•-   ,^1   d      -^-1     *+, -
I    x       —x   A\(x)    dx s M I    x       —x      .4\   (x)    ax

J 0 dx J 0 I dx

p m_!   a1   _*_, *      -

+ Af I    x       — x      Bx(x)    dx.
•/ 0 dx

The sufficiency follows, since by (ii) and (iii) the right-hand side is

finite. Throughout this paper M denotes a positive constant which is

not necessarily the same at every occurrence.

Since summability \R, X, k\m implies summability \R, X, & + l|m

[7], using (2.2.1) we get

I    x       —x      Bx(x)    dx g Af I    x       —x   ^4x(x)    dx
Jo dx J 0 I dx

1    ■/  f"  "-'    ^     -*-1 4k+1r \   "j+ M I    x       —x      -4X   ix)    dx.
Jo dx

The right-hand side is again finite, the lemma follows.

(b) For m = 1, the lemma follows at once from (2.2.1) and the first

theorem of consistency [2] for \R, X, k\ summability of zZa*-

Remark. It should be pointed out that Lemma 3 continues to hold

whenfw=l and& = 0. It is easy to see that (2.2.1) holds for k = 0. Since

(2.2.2) zZ an ~ 1Z (l-) «. = x^Blix).
\„<x K<x \ X /

2.3. Proof of Theorem 1. The necessity part of the theorem fol-

lows from Lemma 3. Therefore we have only to prove that conditions

(i) and (ii) are sufficient for the summability \R, X, k\m of the given

series. In view of Lemma 3, it is sufficient that the given series be

summable \R, X, ^ + l|m, i.e.
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/ =   f V~l| (k + l)af*_25x(*) \mdx < =o .
J o

By Lemma 2, on account of hypothesis (i), we have

3*+I        /* °°    t        _
^'^ = ~ 7T-T-TT /    B^exdt.

(.«  +   1) ^ 0

Again by hypothesis (i)

/" 00

(1   -ff-I)'^1|/'(^)|'n^<    °°»

0

and by second mean value theorem, for some R, 0<R< <x>, this inte-

gral is equal to

(e* - l)"-11 f'(x) \mdx
o

(ei/*_ i)».-i /'( —)    x-Hx > ar*-1/'! —)    <fe.

Hence it will suffice to show that

7=   I       (jfe+l)* Bx(x)-I    Bx(i)e     dt    dx<™.
J i/rI r(£ + i) J o

Writing g(x) for x~k~lB\(x), we have

J < M \    x       g(x)x       - \     t    e     dt
~    Jo r(k + 2)Jo

-I     Bx(t)e    'dt     dx,
T(k + 2)Jo

since

g—k—2 f oo

—- I    twe-*"dt = 1.
r(& + 2)J„

Now

x-mk-2m~1dx   I    {g(x) - g(t)} tk+h"xdl

0 l^o

/■ oo rn
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By Minkowski's inequality;

l/in lim lim
J I Ji      + Ji     ,

where

Ji = M <  I    x-"*-2"*-1   I   /*+Vted/ I   dg(«)   dxV

and
Uoo J    /* » r. i \m\

x-mh-2m-i    1     tk+ie-t,xdt j    dgru)     dA _

We will show that /1 is finite. Putting / = wy in the /-integral of Ji,

we get

/<» I  cx cx \ m
x-mk-2m~xdx I  I    w*+21 dgiu) J   I    y*+1c-""/;td3'>

/OO /       /» 3T \    TO

x-m*-m_1dx <  J    m4+1 I dgiu) I >   .

Applying Holder's inequality to the w-integral, we get

/» oo /■ x
%-rnk-ifa   j      Mm*+m| ̂ (MJ |»

0 *^ 0

/. oc y» 00
«"*+»| dg(w)|m I    x~mk-idx

0 J.,

= Af J    um~x I dg(«) |M
J 0

by hypothesis (ii). We will now show that J2 is finite.

Case (a). Let m>l. Putting t = uy in the /-integral of J2, we get

/» 00 /      /» 00 y»0O ^    W

/j ^ Af I    ar™*-8™-^ -J I    uk+21 dg(«) |   I    y=+xe~^ixdy\   .

Since
/oo /» 00

yk+lg-UV/xdy   <   gl-U/1     I yS+lg-1/Jy   =    Me-"'X,

we have
/oo /    /» 00 ^  m

x-^-^-idx^  I    M*+2e-"/*|dg(«)| >   .
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Applying Holder's inequality, we obtain with l/m + l/m' = 1,

Xoo //.oo lit"0 \   m~'
x-mk-2m-i^x)  j     | a"g(«) |m> <  i    ukm'+im'e-m'ulxduK

/OO /       /•  00 ^^/*C° 1     m_'
ar"*-2™-1^ <  I     |rfg(«)|m> \  I    M*",'+2m'e-m','^M>

/» 00 (• 000 •J I

/I 00 /» uI <*£(«) h I »m_2^^
0 •* 0

/» 00

«"-l| <fg(«)|m

0

< «,

by hypothesis (ii).

Case (b). Let m = l. We have

f   CO /»   00

Jjgl        *-*-3a* j    M*+2e-«/*1 <fg(w) |

= Af f   m*+2 | dg(u) |  f  ar*-3e-»/^*
•/ o ^ 0

/> oo /» oo

I dg(u) |  I    t^e—do
o J1

= M (    \ dg(u) |
J c

< »,

by hypothesis (ii). This completes the proof of Theorem 1.

Proof of Theorem 2. The first part of the theorem follows from

the sufficiency part of Theorem 1 with k = 0. The necessity of condi-

tion (i) follows from the remark following Lemma 3. The necessity of

condition (ii) is obvious.

In the following theorem, we prove the Abelian relationship be-

tween the summability |i?, X, k\m and the summability \A, \\m

of   J2an-

Theorem 3. 1/ (i) ^an is summable |R, X, k\m, m^l, k>l — \/m,

and (ii) the series J2an exp[—X„x] converges /or all x>0 to the sum

/(x), then (iii)  X/1* is summable \A, X|m.
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Proof. In virtue of (ii),

t+i

Thus

ril-e-T'lfix^dx
J 0

_   I        ,, —x.m— 1   mk+m „      (    f      i       fc, .   im —xi . |      If —xt . I
^ Af I     (1 - e   )     x       dx< )     I Bxit) \ e    dt\ <  I     e    d/>

= Af I     I 5x(/) | dt I     (-J     x      e    dt

/■ 00

—m—mk—1 I   J,,  im,

l | Bxit) | *
o

<    CO,

by Lemmas 1 and 3.

In the special case X„ = n, it follows from results of Borwein [l ] and

Flett [4] that (i) implies (iii); so that, in this case, (i) alone implies

(iii), but this is probably not true for more general X„.
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