AN INEQUALITY FOR LINEAR TRANSFORMATIONS ${ }^{1}$

MARVIN MARCUS

1. Statements of results. In this paper the following elementary inequality is proved and exploited.

Theorem 1. If L is a positive-definite hermitian transformation on the finite dimensional unitary space V and $p \geqq 1$, then for arbitrary vectors u and v

$$
\begin{equation*}
\|u\|^{2}+\left(L^{-p} v, v\right) \geqq\left((I+L)^{-p} u+v, u+v\right) . \tag{1}
\end{equation*}
$$

From (1) we can conclude
Theorem 2. If H and K are positive-definite hermitian transformations on V and x and y are arbitrary vectors, then

$$
\begin{equation*}
\left(H^{-1} x, x\right)+\left(K^{-1} y, y\right) \geqq\left((H+K)^{-1} x+y, x+y\right) . \tag{2}
\end{equation*}
$$

By a trivial induction on (2) the following corollary is obtained.
Corollary. If $A_{k}, k=1, \cdots, m$, are positive-definite hermitian on V and x_{1}, \cdots, x_{m} are arbitrary vectors in V, then

$$
\begin{equation*}
\sum_{k=1}^{m}\left(A^{-1} x_{k}, x_{k}\right) \geqq\left(\left(\sum_{k=1}^{m} A_{k}\right)^{-1} \sum_{k=1}^{m} x_{k}, \sum_{k=1}^{m} x_{k}\right) . \tag{3}
\end{equation*}
$$

The result (2) implies the following extension of Bergstrom's inequality [1, p. 119].

Theorem 3. Let A and B be n-square hermitian matrices and let A_{1} be the principal submatrix of A obtained by deleting row one and column one of A. If A_{1} and B_{1} (defined similarly) are positive-definite hermitian, then

$$
\begin{equation*}
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geqq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)} . \tag{4}
\end{equation*}
$$

We also prove
Theorem 4. Let H and K be positive-definite hermitian transformations on V with eigenvalues $h_{1} \geqq \cdots \geqq h_{n}, k_{1} \geqq \cdots \geqq k_{n}$ respectively. If $H+K$ has eigenvalues $r_{1} \geqq \cdots \geqq r_{n}$ and $m \leqq n / 2$, then

[^0] 1966.
${ }^{1}$ This research was supported by Air Force Grant AFOSR 698-65.
\[

$$
\begin{equation*}
\sum_{j=1}^{m}\left(\frac{1}{h_{j}}+\frac{1}{k_{n-j+1}}\right) \geqq 2 \sum_{j=1}^{m} \frac{1}{r_{j}} . \tag{5}
\end{equation*}
$$

\]

2. Proofs. In proving (1) we establish a substantially more general result.

Theorem 5. Let L be a positive-definite hermitian transformation on the unitary space V, $\operatorname{dim} V=n$. Let f be a scalar valued function defined on ($0, \infty$) satisfying

$$
\begin{equation*}
f(1)=1, \quad f(x)>0, \quad f(1+x) \geqq 1+f(x) \tag{6}
\end{equation*}
$$

Then for arbitrary vectors u and v

$$
\begin{equation*}
\|u\|^{2}+\left(f(L)^{-1} v, v\right) \geqq\left(f(I+L)^{-1} u+v, u+v\right) . \tag{7}
\end{equation*}
$$

Proof. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the eigenvalues of L with a corresponding orthonormal set of eigenvectors e_{1}, \cdots, e_{n}. Let $\alpha_{t}=\left(u, e_{t}\right)$, $\beta_{t}=\left(v, e_{t}\right), t=1, \cdots, n$, and compute that

$$
\|u\|^{2}+\left(f(L)^{-1} v, v\right)-\left(f(I+L)^{-1} u+v, u+v\right)
$$

$$
=\sum_{t=1}^{n}\left\{\left|\alpha_{t}\right|^{2}+\frac{1}{f\left(\lambda_{t}\right)}\left|\beta_{t}\right|^{2}-\frac{1}{f\left(1+\lambda_{t}\right)}\left|\alpha_{t}+\beta_{t}\right|^{2}\right\}
$$

$$
=\sum_{t=1}^{n}\left\{f\left(\lambda_{t}\right) f\left(1+\lambda_{t}\right)\left|\alpha_{t}\right|^{2}+f\left(1+\lambda_{t}\right)\left|\beta_{t}\right|^{2}\right.
$$

$$
\left.-f\left(\lambda_{t}\right)\left|\alpha_{t}+\beta_{t}\right|^{2}\right\} / f\left(\lambda_{t}\right) f\left(1+\lambda_{t}\right)
$$

$$
\geqq \sum_{t=1}^{n}\left\{f\left(\lambda_{t}\right)\left(1+f\left(\lambda_{t}\right)\right)\left|\alpha_{t}\right|^{2}+\left(1+f\left(\lambda_{t}\right)\right)\left|\beta_{t}\right|^{2}\right.
$$

$$
\left.-f\left(\lambda_{t}\right)\left(\left|\alpha_{t}\right|^{2}+\left|\beta_{t}\right|^{2}+2\left|\alpha_{t}\right|\left|\beta_{t}\right|\right)\right\} / f\left(\lambda_{t}\right) f\left(1+\lambda_{t}\right)
$$

$$
=\sum_{t=1}^{n}\left\{\left(f\left(\lambda_{t}\right)\right)^{2}\left|\alpha_{t}\right|^{2}+\left|\beta_{t}\right|^{2}-2\left|\alpha_{t}\right|\left|\beta_{t}\right| f\left(\lambda_{t}\right)\right\} / f\left(\lambda_{t}\right) f\left(1+\lambda_{t}\right)
$$

$$
=\sum_{t=1}^{t_{=1}^{1}}\left(f\left(\lambda_{t}\right)\left|\alpha_{t}\right|-\left|\beta_{t}\right|\right)^{2} / f\left(\lambda_{t}\right) f\left(1+\lambda_{t}\right)
$$

$\geqq 0$.
By setting $f(x)=x^{p}, p \geqq 1$, (1) follows from (7).
To prove Theorem 2 set $u=H^{-1 / 2} x, v=H^{-1 / 2} y$ so that

$$
\left(H^{-1} x, x\right)=\|u\|^{2}, \quad\left(K^{-1} y, y\right)=\left(K^{-1} H^{1 / 2} v, H^{1 / 2} v\right)=\left(H^{1 / 2} K^{-1} H^{1 / 2} v, v\right)
$$

(The positive-definite determination of the square root is invariably used here.) Set $L=H^{-1 / 2} K H^{-1 / 2}$ and compute via (1) with $p=1$ that

$$
\begin{aligned}
& \left((H+K)^{-1} x+y, x+y\right)=\left((H+K)^{-1} H^{1 / 2}(u+v), H^{1 / 2}(u+v)\right) \\
& \quad=\left(H^{1 / 2}(H+K)^{-1} H^{1 / 2} u+v, u+v\right)=\left(\left(H^{-1 / 2}(H+K) H^{-1 / 2}\right)^{-1} u+v, u+v\right) \\
& \quad=\left((I+L)^{-1} u+v, u+v\right) \leqq\|u\|^{2}+\left(L^{-1} v, v\right) \\
& \quad=\left(H^{-1} x, x\right)+\left(H^{1 / 2} K^{-1} H^{1 / 2} v, v\right)=\left(H^{-1} x, x\right)+\left(K^{-1} y, y\right) .
\end{aligned}
$$

To prove Theorem 3 we derive an elementary identity for the determinant of an n-square matrix. Thus let X be an n-square matrix and suppose $X(1 \mid 1)$ denotes the $(n-1)$-square principal submatrix of X obtained by deleting row 1 and column 1 of X. More generally, if $i_{1}<\cdots<i_{r}, j_{1}<\cdots<j_{s}$, are integers between 1 and n let $X\left(i_{1}, \cdots, i_{r} \mid j_{1}, \cdots, j_{s}\right)$ denote the submatrix of X obtained by deleting rows i_{1}, \cdots, i_{r} and columns j_{1}, \cdots, j_{s} of X. Now

$$
\begin{equation*}
\operatorname{det}(X)=\sum_{j=1}^{n}(-1)^{1+j} x_{1 j} \operatorname{det}(X(1 \mid j)) \tag{8}
\end{equation*}
$$

$$
=x_{11} \operatorname{det}(X(1 \mid 1))+\sum_{j=2}^{n}(-1)^{1+j} x_{1 j} \operatorname{det}(X(1 \mid j)) .
$$

Now

$$
\begin{equation*}
\operatorname{det}(X(1 \mid j))=\sum_{k=2}^{n}(-1)^{k} x_{k 1} \operatorname{det}(X(1, k \mid 1, j)) . \tag{9}
\end{equation*}
$$

Let $c_{j k}=(-1)^{k+j} \operatorname{det}(X(1, k \mid 1, j)), k, j=2, \cdots, n$, so that the $(n-1)-$ square matrix $C=\left(c_{j k}\right)$ is the adjugate of $X(1 \mid 1)$, i.e. $C=\operatorname{adj} X(1 \mid 1)$. Then substituting (9) in (8) produces

$$
\begin{align*}
\operatorname{det}(X)= & x_{11} \operatorname{det}(X(1 \mid 1)) \\
& +\sum_{j=2}^{n} x_{1 j}(-1)^{1+j} \sum_{k=2}^{n}(-1)^{k} x_{k 1} \operatorname{det}(X(1, k \mid 1, j)) \tag{10}\\
= & x_{11} \operatorname{det}(X(1 \mid 1))-\sum_{j, k=2}^{n} x_{1 j} x_{k 1} c_{j k} .
\end{align*}
$$

Thus, if (,) denotes the standard inner product in the space of ($n-1$)-tuples over the complex numbers, (10) reads

$$
\operatorname{det}(X)=x_{11} \operatorname{det}(X(1 \mid 1))-(\operatorname{adj} X(1 \mid 1) u, v)
$$

in which $u=\left(x_{21}, x_{31}, \cdots, x_{n 1}\right) ; v=\left(\bar{x}_{12}, \bar{x}_{13}, \cdots, \bar{x}_{1 n}\right)$. In case $X=A$ is hermitian we know that $u=v$ and we have in the notation of Theorem 3 with $u_{A}=\left(a_{21}, a_{31}, \cdots, a_{n 1}\right)$

$$
\begin{equation*}
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{1}\right)-\left(\operatorname{adj} A_{1} u_{A}, u_{\mathrm{A}}\right) \tag{11}
\end{equation*}
$$

If we assume that A_{1} (and B_{1}) are positive-definite hermitian, then of course adj A_{1} is also, $\operatorname{det}\left(A_{1}\right)>0, \operatorname{adj} A_{1}=\operatorname{det}\left(A_{1}\right) A_{1}{ }^{-1}$ and we have from (11) (applied to A, B and $A+B$)

$$
\begin{aligned}
\operatorname{det}(A) / \operatorname{det}\left(A_{1}\right) & =a_{11}-\left(A_{1}^{-1} u_{A}, u_{A}\right), \\
\operatorname{det}(B) / \operatorname{det}\left(B_{1}\right) & =b_{11}-\left(B_{1}^{-1} u_{B}, u_{B}\right), \\
\operatorname{det}(A+B) / \operatorname{det}\left(A_{1}+B_{1}\right) & =a_{11}+b_{11}-\left(\left(A_{1}+B_{1}\right)^{-1} u_{A+B}, u_{A+B}\right) .
\end{aligned}
$$

Now, $u_{A+B}=u_{A}+u_{B}$ so that

$$
\begin{aligned}
& \operatorname{det}(A+B) / \operatorname{det}\left(A_{1}+B_{1}\right)-\operatorname{det}(A) / \operatorname{det}\left(A_{1}\right)-\operatorname{det}(B) / \operatorname{det}\left(B_{1}\right) \\
& \quad=\left(A_{1}^{-1} u_{A}, u_{A}\right)+\left(B_{1}^{-1} u_{B}, u_{B}\right)-\left(\left(A_{1}+B_{1}\right)^{-1} u_{A}+u_{B}, u_{A}+u_{B}\right)
\end{aligned}
$$

and we may apply (2) to complete the proof of (4).
To prove Theorem 4 let x_{1}, \cdots, x_{m} be an orthonormal set of eigenvectors of H corresponding respectively to h_{1}, \cdots, h_{m}. Let y_{1}, \cdots, y_{m} be an orthonormal set of vectors in the orthogonal complement of the space spanned by x_{1}, \cdots, x_{m} (possible since $m \leqq n / 2$). Then using a result due to Fan [1, p. 114], we have from (2)

$$
\begin{aligned}
& \sum_{j=1}^{m}\left(\frac{1}{h_{j}}+\frac{1}{k_{n-j+1}}\right)
\end{aligned} \begin{aligned}
& \geqq \sum_{j=1}^{m}\left(H^{-1} x_{j}, x_{j}\right)+\sum_{j=1}^{m}\left(K^{-1} y_{j}, y_{j}\right) \\
& \geqq \sum_{j=1}^{m}\left((H+K)^{-1} x_{j}+y_{j}, x_{j}+y_{j}\right) \\
&=2 \sum_{j=1}^{m}\left((H+K)^{-1}\left(x_{j}+y_{j}\right) / 2^{1 / 2},\left(x_{j}+y_{j}\right) / 2^{1 / 2}\right)
\end{aligned}
$$

Now clearly $\left(\left(x_{j}+y_{j}\right) / 2^{1 / 2},\left(x_{k}+y_{k}\right) / 2^{1 / 2}\right)=\delta_{j k}$ so that applying Fan's result again to the right side of (12) yields (5).
3. An example. Since (1) holds for $p \geqq 1$ it is plausible to conjecture that under the same hypotheses as Theorem 2, one has

$$
\begin{equation*}
\left(H^{-p} x, x\right)+\left(K^{-p} y, y\right) \geqq\left((H+K)^{-p} x+y, x+y\right), \tag{13}
\end{equation*}
$$

for $p \geqq 1$. However, (13) is false in general for $p \geqq 1$. In particular let $p=2, y=0, u=(H+K)^{-1} x$ and the statement (13) becomes

$$
\begin{equation*}
\|u\|^{2} \leqq\left\|\left(I+H^{-1} K\right) u\right\|^{2} . \tag{14}
\end{equation*}
$$

Now (14) is a possibility for all u if and only if the minimum singular value [1, p. 69] of $I+H^{-1} K$ is at least 1 . At this point we use the following elementary result:

An n-square matrix A is the product of two positive-definite hermitian
matrices if and only if it has positive eigenvalues and linear elementary divisors. For if $A=P Q$ where P and Q are positive-definite then $P^{-1 / 2} A P^{1 / 2}=P^{1 / 2} Q P^{1 / 2}$ which is conjunctive to Q, and hence has positive eigenvalues and linear elementary divisors. But A is similar to $P^{1 / 2} Q P^{1 / 2}$. Conversely, if A has linear elementary divisors and positive eigenvalues, then $A=S^{-1} D S$ in which D is a diagonal matrix with positive main diagonal entries. Let $S=U H$ be the polar decomposition of S so that

$$
A=H^{-1} U^{*} D U H=H^{-2} H\left(U^{*} D U\right) H .
$$

Then both H^{-2} and $H\left(U^{*} D U\right) H$ are positive-definite.
Thus we know for example that the matrix

$$
A=\left(\begin{array}{ll}
1 & 5 \\
0 & 2
\end{array}\right)
$$

is of the form $H^{-1} K$ for appropriate positive-definite H and K. It is elementary to compute that in this case the minimum singular value of $I+A$ is less than 1 and hence (14) is not true for all u.

We mention that in case H and K commute then (13) does hold for $p \geqq 1$. This is an easy consequence of the fact that H and K possess a common orthonormal basis of eigenvectors.

Reference

1. Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Ginn, Boston, 1964.

University of California, Santa Barbara

[^0]: Presented to the Society, January 25, 1967; received by the editors August 19,

