AN INEQUALITY FOR LINEAR TRANSFORMATIONS!
MARVIN MARCUS

1. Statements of results. In this paper the following elementary
inequality is proved and exploited.

THEOREM 1. If L is a positive-definite hermitian transformation on
the finite dimensional unitary space V and p=1, then for arbitrary
vectors u and v

¢) llall2 + (Z70,%) = (I + L) + v, u + v).
From (1) we can conclude

THEOREM 2. If H and K are positive-definite hermitian iransforma-
tions on V and x and y are arbitrary vectors, then

(2 (H %, %) + (K7'y,9) 2 (H+ K) v + 3, v + 9).
By a trivial induction on (2) the following corollary is obtained.

COROLLARY. If Ay, k=1, - - -, m, are positive-definite hermitian on
"and x1, - - -, Xm are arbitrary vectors in V, then

m m -1 m m
(3) > (Aitx, w) 2 (( > Ak) >, O xk)-
k=1 kel k=1 k=1
The result (2) implies the following extension of Bergstrom's in-
equality [1, p. 119].

THEOREM 3. Let A and B be n-square hermitian matrices and let A,
be the principal submatrix of A obtained by deleting row one and column
one of A. If A1 and B, (defined similarly) are positive-definite hermitian,
then

det(4 + B) > det(4) det(B)
det(Al + Bl) - det(A 1) det(Bl)

C))

We also prove

THEOREM 4. Let H and K be positive-definite hermitian transforma-

tions on V with eigenvalues = - - - Zh,, b= - - - 2k, respectively.
If H+K has eigenvalues = - - - v, and m=<n/2, then
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2. Proofs. In proving (1) we establish a substantially more general
result.

THEOREM 5. Let L be a positive-definite hermitian transformation on
the unitary space V, dim V=mn. Let f be a scalar valued function defined
on (0, =) satisfying

(6) =1, fl® >0, f1+2) 21+ f(x).
Then for arbitrary vectors u and v
(7) |2 + (F(L) 0, 0) 2 (ST + D)7 + v, 4+ v),

PRrROOF. Let Ay, - - -, N\, be the eigenvalues of L with a correspond-
ing orthonormal set of eigenvectors e, - - -, €. Let ai=(u, e),
B:= (v, e;), t=1, - - -, n, and compute that

““”2 + (f(D) ', v) — (fL 4+ L) 'u + v, u + v)

i 1
- S {lal 4o lale -

; | +8 |2}
e 700 A T

= Z {FO)FA + ) | a]2 + f(1 + 2 | 8|2

t=1

- f()\t)l a + Bt|2}/f(xt)f(1 + 7\1)

S {FO)A 70D | ] + (@ 470D | Be|?

t=1

— 700 a2+ | 8e]2 + 2] @] | B}/ fA)FA + M)

= 2 {2 a2+ | 8|2 — 2] @] | 8] FOD}/FOIFQA + N

t=1

= (00 @] — | BV + 2

t=1
= 0.

v

By setting f(x) =x?, p=1, (1) follows from (7).
To prove Theorem 2 set u=H"'2%, v=H~1%) so that

(H 'z, x) = ||o]|2, (K~'y,9) = (K~'H"%, HV%) = (H?K~'H'/%, 7).

(The positive-definite determination of the square root is invariably
used here.) Set L =H-12KH-Y2 and compute via (1) with p=1 that
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(H+K) 'a+y, x+9) =((H+EK) H'*(u+1), H'*(u+1))
=(HY*(H+K)"'H ?y+v, u+v)=((HV*(H+K)H %) y+9, u+v)
=((I+L) u+v, u+1) é”u” (L, v)
= (H 'z, )+ (H"*K~*H'*, v) = (H 'x,2) + (K~ 'y, 3).

To prove Theorem 3 we derive an elementary identity for the de-
terminant of an #-square matrix. Thus let X be an n-square matrix

and suppose X (1| 1) denotes the (»—1)-square principal submatrix of
X obtained by deleting row 1 and column 1 of X. More generally, if

u< -+ - <ty n< -+ <js, are integers between 1 and = let
X, - -+, 4|, -, j) denote the submatrix of X obtained by
deleting rows 41, - - -, 7, and columns j, - - -, j, of X. Now

det(X) = Zn: (—1)ixy; det(X(1] 7))

(8) .

= a; det(X(1] 1)) + Z (—1)*ixy; det(X(1] 7).
Now ]
) det(X(1] 7)) = 3 (— 1)z det(X(1, k] 1, 7)).

k=2

Let cir=(—1)*idet(X (1, kI 1,7)),k37=2, - -,mn,sothat the (n—1)-
square matrix C= (cu) is the adjugate of X(1|1), i.e. C=adj X(1|1).
Then substituting (9) in (8) produces

det(X) = xy; det(X(1] 1))

+ 30 (=DM 3 (— Db det(X(L £ 1,7)
=2 k=2
(10) ,,
= %11 det(X(l I 1)) — Z X1;%1Cjk.

Jk=2

Thus, if (, ) denotes the standard inner product in the space of
(n—1)-tuples over the complex numbers, (10) reads

det(X) = w1y det(X(1] 1)) — (adj X(1| 1)u, v)

in which %= (%21, a1, - * * , %n1); V= (&1, %13, + * - , %1a). In case X =4
is hermitian we know that # =% and we have in the notation of The-
orem 3 with u4=(as, azn, - - * , Gn1)

(11) det(4) = a1 det(41) — (adj A1ua, u4).
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If we assume that 4; (and B;) are positive-definite hermitian, then
of course adj 4, is also, det(41) >0, adj 4:=det(41)4and we have
from (11) (applied to 4, B and 4 +B)
det(A4)/det(4y) = ayy — (AT ua, %4),
det(B)/det(B1) = b11 — (Bi'us, us),
det(4 + B)/det(Al + Bl) =ay + by — ((Al -+ Bl)—IuA.'.B, uA.,.B).
Now, #syp=us~+up so that
det(A + B)/det(A; + By) — det(4)/det(A;) — det(B)/det(Bs)
= (A7'u4, ua) + (Br'up, ug) — ((A1 + B1)"'ua + up, ua + un)
and we may apply (2) to complete the proof of (4).
To prove Theorem 4 let %, - - -, x,, be an orthonormal set of eigen-
vectors of H corresponding respectively to 4y, - - -, An. Let yq, - - -,
ym be an orthonormal set of vectors in the orthogonal complement

of the space spanned by x1, - - -, xn (possible since m <#/2). Then
using a result due to Fan [1, p. 114], we have from (2)

m 1 1 m m
> (— + ) 2 D (H 'y, %) + 20 (K5, 95)

=1\l Ra—jia =1 =1

= H + K)™'z; %5 ;
12 _Z_:,(( + K)'%; + y5, %5 + 95)

=22 (B + K™ (% + 9)/27, (% + 3)/2'12).
=1
Now clearly ((x;4+vy;) /2Y2, (xx+yi)/21%) = b so that applying Fan's
result again to the right side of (12) yields (5).

3. An example. Since (1) holds for p =1 it is plausible to conjecture
that under the same hypotheses as Theorem 2, one has

(13) (H7z, x) + (K773, 9) 2 (H + K)™?2 + y, x + ),

for p=1. However, (13) is false in general for p = 1. In particular let
p=2,9=0, u=(H+K) x and the statement (13) becomes

(19 llullz = || I + HK)al]2.

Now (14) is a possibility for all % if and only if the minimum singular
value [1, p. 69] of I+H~K is at least 1. At this point we use the fol-
lowing elementary result:

An n-square matrix A is the product of two positive-definite hermitian
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matrices if and only if it has positive eigenvalues and linear elementary
divisors. For if A =PQ where P and Q are positive-definite then
P24 plz=PU2QPY2 which is conjunctive to Q, and hence has
positive eigenvalues and linear elementary divisors. But 4 is similar
to PY2QPY2, Conversely, if A has linear elementary divisors and
positive eigenvalues, then 4 =S5-1DS in which D is a diagonal matrix
with positive main diagonal entries. Let S= UH be the polar decom-
position of S so that

A = H-'\U*DUH = H*H(U*DU)H.

Then both H-? and H(U*DU)H are positive-definite.
Thus we know for example that the matrix

(0 )

is of the form H-'K for appropriate positive-definite H and K. It is
elementary to compute that in this case the minimum singular value
of I+ A4 is less than 1 and hence (14) is not true for all #.

We mention that in case H and K commute then (13) does hold
for p=1. This is an easy consequence of the fact that H and K
possess a common orthonormal basis of eigenvectors.

REFERENCE

1. Marvin Marcus and Henryk Minc, 4 survey of matrix theory and matrix in-
equalities, Ginn, Boston, 1964.

UNIVERSITY OF CALIFORNIA, SANTA BARBARA



