
ENTIRE FUNCTIONS OF BOUNDED INDEX

FRED GROSS

I. Introduction. An entire function, f(z), has a Taylor expansion

about any point a in the complex plane of the form

f(z) = £ a-n(z - a)".

Since this series is absolutely convergent everywhere in the plane,

the terms \an\ must approach 0. Consequently, there exists for each

a, an index n0 = n(a) ior which \an\ is a maximal coefficient. B. Lepson

[2] raised the problem of characterizing entire functions for which

n(a) is bounded. The latter are called functions of bounded index. In

what follows, we shall give a partial solution to Lepson's problem.

We shall also include a number of results using somewhat different

conditions than those suggested by Lepson.

II. Functions of bounded index and nonuniform bounded index.

Definition 1. An entire function is said to be of bounded index if

and only if there exists an integer N, such that for all z

/.,.    ,/(1)|    l/(2)l \f(m\\> \fU)\

(1)
j = 0, 1, 2, 3, • • ■

(f(0) denotes/). We shall say that/ is of index N, ii N is the smallest

integer for which (1) holds. An entire function which is not of bounded

index is said to be of unbounded index.

A function of bounded index satisfies

N     I /CO I I fU) I
(2) £ ,J—L ̂  ^rr1 ;     j = o, 1,2, 3, • • •.

.-=0    t\ j\

Furthermore, if (2) holds then

/,,,    |f(1),    l/(2)l fm\>        1 I/(I)Imax (J/|,|/«> I,—,  ....—Jfc———,

j = 0, 1, 2, 3, • • • .

These facts suggest

Definition 2. An entire function/(s) is said to be of nonuniform
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bounded index if and only if there exist integers Nj, such that

f    I/W(S)|     >       l/(y)(*)l      .        |K„ -019,
2- -7,-^ c-    for | z |  >  Nf,       j = 0, 1, 2, 3, ■ ■ ■
,=o t! .7

c is any fixed constant.

For bounded regions Lepson [2] proved that: If/(s) f^O is an entire

function and R is any bounded set, then there is an integer N, such

that for any z in R and any nonnegative integer n

—-— ^ max(J/(z) I , |/a)(2) | , —_, . . . , ___j -

The function e2 is obviously of bounded index. More generally, we

prove the simple

Theorem 1. /// is entire and satisfies fa+l) =f, then it is of bounded

index.

Proof. Write j = q(k + l)+r, rS=k. Then

fU) I y«C*+l)+r f(r) J(r)

TT   "\(qik+ 1) +r)l   "   iqik + 1) + r)!   <   TT

S max     /   ,    /c»   , • ■ ■ ,\J— \)

and Theorem 1 follows.

As another generalization of the case/(z) =ez we prove:

Theorem 2. /= Qeaz is of bounded index whenever Q is a polynomial.

Proof. We may assume without any loss of generality that the

leading coefficient of Q is 1. Let

/« »      *(0   k-i k        Hk - 1)   ■  ■  ■ ik - i + 1)
pk = — = 2-< ciQ  a   ;     °i =-< kn

eaz       ,-_0 i\

for 1 ̂ i^k; cj=l and c* = 0 for i>k, where n is the degree of Q.

|0(i)| <3rn/2 for all nonnegative integers i and for sufficiently

large r; say r>r0.

Assume that / is of unbounded index. Then there exist an infinite

sequence of k and a corresponding sequence zk both going to 00

such that

I/(«.)! < \fk(zk)\/k\.

This implies that
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. . "       aQ    izk)a
(3) I g(2*)l < E '     :,—L •

i-o «!

Hence, it suffices to show that (3) is impossible when \a\ >1, i.e.,

to show that we cannot have

(4) \Q(zk)\  <£NlQ   (Z*)|M   <li^lL,
11       ~J £! 2 k\

where rk = \ zk \.

Since | Q\ >r"/2 for sufficiently large r, say r>ri} (ri independent

of k, ol course) it follows that (4) would imply that

(5) 1 < 3k" \ a\k/k\

for an infinite sequence of k—><x>. Since (5) is impossible our theorem

follows.

One might conjecture that f(z) is of bounded index if and only if

f(zh) is, where k is a positive integer. This, however, is false, as illus-

trated by the pair ez and e' ; since e' is of bounded index and ez* is

not, as we shall see in the next section. Nevertheless one can prove the

following:

Theorem 3. Let t be a positive integer. If g(z) =/(z1/() is entire and

f(z) is of bounded index (say of index k) then g(z) is of nonuniform

bounded index.

Proof. We may assume that t>l. Using mathematical induction

and performing some elementary calculations one can verify that for

any positive integer n

(6) £<«>(*)   =   Plnf'^Z1")   +  PtnPKz11')   +   "   •   •   +  PnnfMizl"),

where £,„ = c,n(z_1/On'_\ cin a nonzero constant; n=l, 2, 3, • ■ ■ .

Using (6) one shows easily that

U(2)(3)l \gm(z)\
g(z)    +   g'(z)    + li-LZ". + ■ • • + '*    Wl

^ I/71")! +(\p\A -Z \p*u\)\fm(*")\

(7) , '"2 ,
,  / i   * i       v i ..* i \ \I    (     ' \    i+ (l*.| -£i*i)—^—+ •••
, /, *,    i i *,\ \fw(*llt)\ , i * i I.W0I

+ I I Pn I -   Zv   I Pa I )-V ■ ■ ■ +\pkk\-— •
\ y=,+i IV. k\
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The pif's are the same as the pij's except for some positive con-

stant multipliers.

On the other hand, for any integer s>k

(8) ki>Mstu:.i^^-
si i=x il

Thus to prove Theorem 3 it suffices to show that

1/1   +([\P*ii\   -t\pl\   ~   \p*u\)\fW\

,   (\    * I 4-|*| I    *|\l/(2,l    ,
+ (\pn\ - z2 \pv\ - \**\)~£r- + ' ' '

(9)    +(\p*i\ - i: \pl\)^p-+"-
\       j-i+x     / ti

L/i *i   i *\\\f(k)\
+ y\ pkk\ - \ pk,\ i

* |/<*+!> | * |y(*+2)| #      |y(,)|

> l/'(i+1)'1 (^Ti)i+ U(*+2)>1 (*T^ + " • + l>-1 "TT

for sufficiently large |z| =r.

The terms | p*t\ dominate the coefficients of |/(i)| (which we denote

by Ci), since they have minimal degree (in the variable z~l") in each

term. Using this fact one can easily show that for any c>0

(10) —2^ ~~*—-> c 2u->c-
*   .-o   £(*+»,   I    »1 i-l      il (k + j)l

ior j=l, 2, ■ ■ ■ , s — k, and \z\ >N(s); N(s) some integer dependent

on 5. The last inequality follows from the hypotheses of our theorem.

From (10) we get

(1     * I /■«) |\ •-*        * I f(k+i) I
— 2^  I C,-1 —-— I > c 2w  I /»(*+/). I  ,,,    ..,
J   i-o *!    / y-i ik+j)l

for | z | >N(s) and our proof is complete.

As an application of Theorem 3 we have

Corollary. Let k be a positive integer. The entire function

oo ^n

/(«) = Z 7TT7
n=o   («»)!

m of nonuniform bounded index.
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Proof. f(z) can be expressed as

»    (z1'*)*"

/(*) = £ -r-r- = g&>*),
„=o   (*»)!

where g(z) satisfies g(k)(z) =g(z). Thus, by virtue of Theorem 1, g(z)

is of bounded index. Hence, by Theorem 3, f(z) is of nonuniform

bounded index.

It is very likely that Theorem 3 can be generalized to the following

Conjecture. If g(z) is of unbounded index and p(z) is a polynomial

then g(p(z)) is also of unbounded index.

III. Functions of unbounded index. We begin with the following

lemma due to E. Borel [l].

Lemma 1. // V(r) is monotonic increasing, then for any e'>0 and

e>0

V[r+ -) ^ (1 + e)V(r)
\ (log V(r)y+>'/

for all r outside a set of finite measure.

Proof. See Hayman [l, Lemma 2.4 (i), pp. 38-39], for the proof

of a similar result.

Lemma 2. For any entire function f(z) and any e>0

Mfw(r) ^ M,(r)l+'

for all r outside a set of finite measure. This exceptional set may depend

on n.

Proof. It is well known (see [3]) that for R>r

Mf(R)  ( i        i \
Mt>(r) :£-1 Mf(r) denotes max |/(z) |  ).

R - r  \ U]_r /

Choose

1
R = r-\-;        e' > 0.

(log M,(r)Y+''

We get by virtue of Lemma 1 that

Mr(r) ik M,(r + J )■ (logMf(r))^'
(11) \        'log Mfir)y+< J

<il + ,)Miir)ilogMsir))1^'
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for all r outside a set of finite measure.

Thus the assertion of our lemma is valid when » = 1.

Suppose that Mfm(r) ^Mf(r)1+'. Then by (11)

M/(t+i)(r) g (1 + t)Mfm(r)(log MMr))1+<'

g (1 + e) W/(r)1+«(log HXf))l+«' < M>(r)1+«"        (e" > e)

for all r outside a set of finite measure. Our lemma follows.

We now list some additional obvious properties of the maximum

modulus function that we shall use in the sequel:

(a)  Mlg(r)^M}(r)Ma(r).

(h) Mf»(r) = Mf(r)».
(c) If Mg(r) <eMf(r) for sufficiently large r, then for any e>0,

(l-e)Mj(r)<Mf+g(r)<(l+e)Mf(r) for sufficiently large r.

(d) li f(z) is transcendental, then for any e>0, Mf(r) <Mt,(r)1+'

for sufficiently large r.

Theorem 4. Let a and <p be any two transcendental entire functions

and let hbea real number less than \. If

Ma(r) < M*(r)*

for a set, s, of r of infinite measure, then f = ae* is of unbounded index.

If a is a polynomial and <p is entire then f is of unbounded index.

Proof. We prove the first part of the theorem. The second part

follows from a similar argument. It follows by mathematical induc-

tion that

fM = [(*')"« + *«(*'. <t>m, " ', <2>(n), «,«',-••, «<»»)]e*
i ' 1 A.

= hne*,

where pn is a polynomial in <p', 0(2), ■ ■ ■ , a, a', ■ ■ ■ , a(n) whose

degree in the <p's is less than or equal to n — 1 and where at most one

of a, a', ■ ■ ■ , a(n) appears in any one term.

It follows from (12) and the properties of the maximum modulus

function that for any e> 0

MPn(r) ^ M^(r)("-1)(1+<)+«+«)*

for all r in the set s, with the possible exception of a set of finite mea-

sure. Choosing e sufficiently small, we deduce from (12) that

(M^(r))"-S - (Mr(r))^n-lHl+t)+sa+e) ~ MK(r)

< MAr)n+i + Mv(rY«-» «+''+<1+<>5

or for sufficiently small e we have
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(13) (1 - 0(iM'))"-' - M„H(r) < (1 + i)iMAr)Y+i

for a set of r of infinite measure.

Now assume that/ is of index k; then

I fm I I f(k} I       I 7"0 I
(14) |/| + |/'|+---+■■■+--->—-L        im>k).

2! k\ ml

Hence, from (12) we find that

ii        ii        I ̂ 21 I //* I        \ hm\

2! £! ml

and consequently

M,i2(r) M4i(r)       Mh(r)
(15) Ma(r) + MM(r) + —^ + • • • + —^ > -^ •

21 yfe! w!

From (13) and (15) we get for sufficiently small €o>0

Mh,(r) Mhk(r)
(16) MJ(r) + Mhl(r) +-j- + ■ ■ ■ + -^ < (3f^(r))*+«+<o

for a set, s', of r of infinite measure. On the other hand

(17) Mhmir)/ml > (Mr(r))""*-«

for a subset of s' of infinite measure.

Since (16) and (17) contradict (15) our theorem follows.

Corollary. An entire function with at most a finite number of zeros

is of bounded index if and only if it is of the form piz)eaz, where piz) is

polynomial and a is a complex constant.

It is worth noting that the proof of Theorem 4 can be used to gen-

eralize the results of that theorem to functions of the form ae*+{5

provided that suitable growth restrictions are imposed on fi.

The methods of this paper are elementary. One can probably get

somewhat stronger results by using the Wiman-Valiron theory.
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