
SOME IDENTITIES RELATED TO POLYA'S PROPERTY
W FOR LINEAR DIFFERENTIAL EQUATIONS

ANTON ZETTL

1. Introduction. In this note we study relationships between matrix

solutions of

(1) X' = AX

and

(2) X' = BX

where B=— T~1A*T for some constant matrix T satisfying

j*-p-i — l or T*T~1== —I. A familiar example is the case when (1)

is the classical vector matrix representation of

k-1

(3) Ly=yk + £ atf = 0.
«-o

Then, for T= (( — l)'Si,k+X-j), (2) will represent the adjoint equation

k—2

(4) L+y = (-i)Y + £ (-ly&yY = o.
t'=0

An application of some of our results to this case will yield that cer-

tain sets of fundamental solutions of (3) have property W—for a

definition see [3]—if and only if certain sets of solutions of (4) have it.

We will obtain identities among minors of Wronskians associated

with (3) and (4).

2. Determinantal identities. Let A =(o<y) be a kXk matrix of con-

tinuous complex valued functions on some interval such that tr A =0.

Let T he a kXk constant matrix such that T*T~l = I or T*T~1= —I

and let B= —T~1A*T. For a given u let M(t, u) and N(t, u) denote

the unique matrix solutions of X' =AX with X(u) =7 and Y' =BY

with Y(u)=I, respectively.

Lemma 1. M(t, u)M(u, v) = M(t, v).

Proof. This is immediate from the fact that for any nonsingular

solution <p of X' = AX, M(t, u)=<p(t)<t>~1(u), which follows from the
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uniqueness of the solution to the system X'=AX with Xiu)=I. Of

course, the same result is valid for N.

Lemma 2. tr M(t, u) = l=tr N(t, u).

Proof. This follows from the fact that if X' = AX, then (det X)'

= (tr 4)(det X)—see [l, Theorem 7.3, p. 28].

Theorem 1. M(t, u) = T^N*^, t)T.

Proof. For fixed u let Xit) = T~1*M*it, u)T*Nit, u). Then a

simple computation yields that X'it) = 0 and Xiu)=I. Hence

XQ) =1. This is equivalent to the theorem in view of Niu, t)Nit, u) = I

which follows from Lemma 1.

Let Pit, u) = (Pn(t, u)) where Pa(t, u) is ( — l)i+j times the minor

of Nn(t, u) in Nit, u). Then Niu, t)=Nit, u)-1 and det Nit, u) = l

imply that N(u, t) = P * (/, u). Combining this with Theorem 1 we

obtain

Theorem 2. Mit, u) = T^Pit, u)T.

This theorem can be made into a much stronger appearing result

by using a known fact on adjugate determinants: If C= (cy) is a kXk

matrix and D = id a) where da is the cofactor of c,-,-, then any algebraic

minor of order r, 1 sSr <k of D is equal to its algebraic complement in

C times (det C)r_1. Combining the above with Theorem 2 we obtain

Theorem 3. Any rXr l^r<k algebraic minor of TNit, u)T~L is

equal to its algebraic complement in Mit, u).

3. Subwronskians relative to L and L+. We now wish to apply

some of the above identities to subwronskians of solutions of Ly = 0

and L+y = 0. This is accomplished by specializing A to

"0    1

0    0    1

A =

1

- — ao, — Oi, ■ • • , — a*_2,     0J >

and letting T= ((—l)*5,-,i+i_y). Now (1) represents (3) and (2) repre-

sents (4). Let y,Zj j=l, • • • , k be solutions of (3) and (4), respec-

tively, such that for some number a
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y](a) = 1    if i = j — 1,

= 0    iii^j-1,

and

Zj(a) = 1    if i = j - 1,

= 0   if i ^ j - 1.

An application of Theorem 3 yields:

Corollary 1. Let a= {ax, a2, ■ ■ ■ , ay} and 8= {ft, /32, • ■ • , Bj)

be increasing subsequences of 1, 2, 3, ■ ■ ■ , k and let

a' = } k + 1 — ay, k + 1 — ay_i, ■ • ■ , k + 1 — ax}

and

B' = {k + 1 - Bj, k + 1 - Bj-!, ■ ■ ■ , k + 1 - Bi}.

Then—using the notation of [l]—d(M(t, u) [a\ 8]) =d(N(t, M)(a'|/3'))-

Among these identities the following ones are of particular interest

in connection with Polya's property W. In the notation of [3],

W(yx, ■ ■ ■ ,y,) = W(zx, ■ ■ ■ , zk^3).

It is hoped that these identities have applications to other areas,

such as, the study of conjugate points, boundary value problems, etc
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