A CRITERION FOR $n-n$ OSCILLATIONS IN DIFFERENTIAL EQUATIONS OF ORDER $2 n$

DON B. HINTON
For the second-order equation $y^{\prime \prime}+q y=0$, Wintner [6] proved that a sufficient condition for oscillation was that

$$
\begin{equation*}
t^{-1} \int^{t} q(x)(t-x) d x \rightarrow \infty \quad \text { as } t \rightarrow \infty \tag{1}
\end{equation*}
$$

Independently Leighton [2] proved that a sufficient condition for oscillation of $\left(r y^{\prime}\right)^{\prime}+q y=0$ was that q be positive for sufficiently large x and that

$$
\begin{equation*}
\int^{\infty} r(x)^{-1} d x=\infty \quad \text { and } \quad \int^{\infty} q(x) d x=\infty \tag{2}
\end{equation*}
$$

Subsequently Leighton [3] proved that conditions (2) were sufficient without the restriction q be positive for sufficiently large x.

In this paper we prove analogous theorems for the linear equation of order $2 n\left(r y^{(n)}\right)^{(n)}+(-1)^{n-1} q y=0$. There will be no sign restrictions on the function q. For $n=1$, the earlier results of Wintner and Leighton will be contained in our theorems. The results of this paper parallel earlier results of the author for a fourth-order equation with middle term [1].

Throughout r and q denote continuous, real-valued functions on a ray $[a, \infty)$ and r is assumed to be positive-valued. If the real-valued function y has n continuous derivatives and $r y^{(n)}$ has n continuous derivatives, then we define $L(y)$ by:

$$
\begin{equation*}
L(y)=\left(r y^{(n)}\right)^{(n)}+(-1)^{n-1} q y . \tag{3}
\end{equation*}
$$

Such a y is said to be admissible for L.
The operator L is called oscillatory on $[a, b]$ if and only if there is an admissible function $y, y \neq 0$, and numbers c and $d, a \leqq c<d \leqq b$, such that $L(y)=0$ and

$$
\begin{equation*}
y(c)=\cdots=y^{(n-1)}(c)=0=y(d)=\cdots=y^{(n-1)}(d) \tag{4}
\end{equation*}
$$

Otherwise L is called nonoscillatory on $[a, b]$.
For $b>a$, let $Q(b)$ denote the set of all real-valued y on $[a, b]$ such

[^0] 13, 1966.
that (a) y has $n-1$ continuous derivatives on $[a, b]$ with $y^{(n-1)}$ absolutely continuous, (b) $y^{(n)}$ is essentially bounded ($y^{(n)}$ denotes the almost everywhere derivative of $y^{(n-1)}$) and (c) y satisfies the boundary conditions (4) with $a=c$ and $b=d$.

The function I_{b} is defined on $Q(b)$ by:

$$
\begin{equation*}
I_{b}(y)=\int_{a}^{b}\left[r(x) y^{(n)}(x)^{2}-q(x) y(x)^{2}\right] d x . \tag{5}
\end{equation*}
$$

For our basic criterion of oscillation we consider a vector-matrix formulation of $L(y)=0$. Let the $n \times n$ matrices of functions $A=\left[a_{i j}\right]$, $B=\left[b_{i j}\right]$ and $C=\left[c_{i j}\right]$ be defined by:

$$
\begin{aligned}
a_{i j}=0 & \text { if } j-i \neq 1, & b_{i j}=0 & \text { if } i \neq n \text { or } j \neq n \\
=1 & \text { if } j-i=1, & & =1 / r
\end{aligned} \quad \text { if } i=n \text { and } j=n
$$

and

$$
\begin{aligned}
c_{i j} & =0 & & \text { if } i \neq 1 \text { or } j \neq 1 \\
& =-q & & \text { if } i=1 \text { and } j=1
\end{aligned}
$$

Then if $L(y)=0$,

$$
\begin{equation*}
\eta=\left[y^{(i-1)}\right]_{i=1}^{n} \quad \text { and } \quad \xi=\left[(-1)^{n-i}\left(r y^{(n)}\right)^{(n-i)}\right]_{i=1}^{n}, \tag{6}
\end{equation*}
$$

it is readily verified that

$$
\begin{equation*}
\eta^{\prime}=A \eta+B \xi, \quad \xi^{\prime}=C \eta-A^{T} \xi \tag{7}
\end{equation*}
$$

where A^{T} denotes the transpose of A.
Conversely, if (η, ξ) is a pair of absolutely continuous real vectorvalued functions on $[a, b]$ such that (7) hold almost everywhere, then it follows that (7) hold everywhere, and the first component η_{1} of η is admissible for L and $L\left(\eta_{1}\right)=0$.

Reid [5, p. 673] has defined the system (7) to be oscillatory on $[a, b]$ if and only if there is a pair (η, ξ) of absolutely continuous real or complex vector-valued functions on $[a, b]$ such that (7) hold almost everywhere, $\eta \neq 0$, and there are numbers c and $d, a \leqq c<d \leqq b$, such that $\eta(c)=0=\eta(d)$. The one-to-one correspondence between solutions y of $L(y)=0$ and the first components η_{1} of solutions of (7) proves that L is oscillatory on $[a, b]$ if and only if (7) is oscillatory on $[a, b]$.

We remark that in the terminology of Reid [5, p. 673], the system (7) is identically normal on every subinterval of $[a, \infty)$ since if
(η, ξ) is a solution and $\eta \equiv 0$, then the first equation of (7) implies $\xi_{n} \equiv 0$, and the second equation of (7) implies successively that $\xi_{n-1} \equiv 0, \cdots, \xi_{1} \equiv 0$.

Our basic criterion for oscillation is the following:
Theorem 1. If there exists $a y \in Q(b), y \neq 0$, such that $I_{b}(y) \leqq 0$, then L is oscillatory on $[a, b]$.

Proof. We note first that $C(x)^{T}=C(x), B(x)^{T}=B(x)$ and that $B(x)$ is nonnegative definite on $[a, b]$. Moreover, if $y \in Q(b), \eta$ $=\left\{y^{(i-1)}\right\}_{i=1}^{n}, \xi=\left\{\xi_{i}\right\}$ where $\xi_{n}=r y^{(n)}$ and $\xi_{i}=0$ otherwise, then

$$
\xi^{T} B \xi+\eta^{T} C \eta=r\left(y^{(n)}\right)^{2}-q y^{2} .
$$

Then in the terminology of Reid [5, p. 678], we have $(\eta, \xi) \in \mathscr{D}_{0}[a, b]$, $\eta \neq 0$ and $I[\eta, \xi ; a, b]=I_{b}(y) \leqq 0$. Thus by Theorem 5.2 of [5], L is oscillatory on $[a, b]$.

From Theorem 1 we obtain a comparison theorem for oscillation.
Theorem 2. If r_{1} and q_{1} are continuous, real-valued functions on [a, b] with r_{1} positive-valued, $y \in Q(b)$ is a nontrivial solution of $L(y)=0$ and $L_{1}(y)=\left(r_{1} y^{(n)}\right)^{(n)}+(-1)^{n-1} q_{1} y$, then L_{1} is oscillatory on $[a, b]$ if

$$
\begin{equation*}
\int_{a}^{b}\left[\left(r(x)-r_{1}(x)\right) y^{(n)}(x)^{2}-\left(q(x)-q_{1}(x)\right) y(x)^{2}\right] d x \geqq 0 . \tag{8}
\end{equation*}
$$

Proof. Let J_{b} be defined by the right-hand side of (5) where r and q are replaced by r_{1} and q_{1} respectively. Then equation (8) reduces to $I_{b}(y)-J_{b}(y) \geqq 0$. Integrating $\int_{a}^{b}\left(r y^{(n)}(x)\right) \cdot y^{(n)}(x) d x$ by parts n times proves that $I_{b}(y)=(-1)^{n} \int_{a}^{b} L(y) \cdot y(x) d x$. Since $L(y)=0$, equation (8) is equivalent to $J_{b}(y) \leqq 0$. Theorem 1 now implies L_{1} is oscillatory on $[a, b]$.

As a corollary we have a generalization of the Sturm-Picone Theorem for second-order equations.

Corollary 2.1. If L is oscillatory on $[a, b]$ and $r_{1}(x) \leqq r(x)$ and $q_{1}(x) \geqq q(x)$ for each x in $[a, b]$, then L_{1} is oscillatory on $[a, b]$.

We now prove our principal theorem.
Theorem 3. If there is a positive-valued continuous function h on $[a, \infty)$ such that as $t \rightarrow \infty$,
(i) $\int_{a}^{t} x^{n-1} h(x) d x \rightarrow \infty$ and
(ii) $\lim \inf J(t)=-\infty$ where

$$
\begin{aligned}
J(t)= & {\left[\int_{a}^{t}\left\{r(x)[(n-1)!h(x)]^{2}-q(x)\left[\int_{x}^{t}(s-x)^{n-1} h(s) d s\right]^{2}\right\} d x\right] } \\
& \cdot\left[\int_{a}^{t} x^{n-1} h(x) d x\right]^{-2}
\end{aligned}
$$

then there is a number $b>a$ such that L is oscillatory on $[a, b]$.
Proof. For each number $t>a+1$ we construct a function y_{t} on $[a, t]$ such that $y_{t} \in Q(t)$. For"some t sufficiently large, we will have $I_{t}\left(y_{t}\right)<0$, thus proving Theorem 3.

For $t>a+1$, define z_{t} on [a, t] by

$$
z_{t}(x)=\left[\int_{x}^{t}(s-x)^{n-1} h(s) d s\right]\left[\int_{a}^{t} s^{n-1} h(s) d s\right]^{-1} .
$$

It is clear that for $k=0, \cdots, n-1$,

$$
\left[d^{k} z_{t}(x) / d x^{k}\right]_{x=t}=0 .
$$

For $k=0, \cdots, n-1$, let

$$
c_{t k}=\left[d^{k} z_{t}(x) / d x^{k}\right]_{x=a+1} .
$$

Application of l'Hospital's rule proves that $c_{t 0} \rightarrow 1$ and for $k=1$, $\cdots, n-1, c_{t k} \rightarrow 0$ as $t \rightarrow \infty$.
Let p_{t} be the polynomial

$$
p_{t}(x)=(x-a)^{n} \sum_{j=0}^{n-1} a_{j} x^{j}
$$

satisfying, for $k=0, \cdots, n-1$,

$$
\begin{equation*}
\left[d^{k} p_{t}(x) / d x^{k}\right]_{x=a+1}=c_{t k} . \tag{9}
\end{equation*}
$$

A simple calculation proves that for $k=0, \cdots, n-1$,

$$
\left[d^{k} p_{t}(x) / d x^{k}\right]_{x=a}=0 .
$$

The n coefficients a_{0}, \cdots, a_{n-1} are determined as solutions to the n linear equations (9). The matrix of coefficients does not depend on t. That the determinant of the matrix of coefficients is nonzero follows from Theorem II of [4] and the fact that p_{t} is a solution of the differential equation $y^{(2 n)}=0$. Hence a_{0}, \cdots, a_{n-1} are bounded functions of t. Define y^{\prime} by:
$y_{t}(x)=p_{t}(x)$ for $a \leqq x \leqq a+1$ and $y_{t}(x)=z_{t}(x)$ for $a+1<x \leqq t$. Then $y_{t} \in \mathbb{Q}(t)$.

We have $I_{t}\left(y_{t}\right)=P(t)+K(t)$, where

$$
P(t)=\int_{a}^{a+1}\left[r(x)\left(p_{t}^{(n)}(x)\right)^{2}-q(x) p_{t}(x)^{2}\right] d x
$$

and

$$
K(t)=\int_{a+1}^{t}\left[r(x)\left(z_{t}^{(n)}(x)\right)^{2}-q(x) z_{t}(x)^{2}\right] d x
$$

Since a_{0}, \cdots, a_{n-1} are bounded functions of $t, P(t)=O(1)$ as $t \rightarrow \infty$. If M is a bound for r, q and h on $[a, a+1]$, then

$$
\begin{array}{r}
\left|\int_{a}^{a+1}\left\{r(x)[(n-1)!h(x)]^{2}-q(x)\left[\int_{x}^{t}(s-x)^{n-1} h(s) d s\right]^{2}\right\} d x\right| \\
\leqq M\left\{[(n-1)!M]^{2}+\left[\int_{a}^{t}(s-a)^{n-1} h(s) d s\right]^{2}\right\}
\end{array}
$$

Hence as $t \rightarrow \infty$,

$$
\int_{a}^{a+1}\left[r\left(z_{t}^{(n)}(x)\right)^{2}-q(x) z_{t}(x)^{2}\right] d x=O(1) .
$$

Thus condition (ii) implies that lim inf $K(t)=-\infty$ as $t \rightarrow \infty$. Hence $\lim \inf I_{t}\left(y_{t}\right)=-\infty$ as $t \rightarrow \infty$. In particular, $I_{t}\left(y_{t}\right)<0$ for some sufficiently large t, thus proving Theorem 3 .

For $h \equiv 1$, we have a useful corollary of Theorem 3 .
Corollary 3.1. If

$$
\limsup _{t \rightarrow \infty} t^{-2 n} \int_{a}^{t} r(x) d x<\infty
$$

and

$$
\lim _{t \rightarrow \infty} t^{-2 n} \int_{a}^{t} q(x)(t-x)^{2 n} d x=\infty
$$

then for some $b>a, L$ is oscillatory on $[a, b]$.
A weaker but more applicable version of Theorem 3 may be stated as follows:

Theorem 4. If there is a positive-valued continuous function h on $[a, \infty)$ such that as $t \rightarrow \infty$
(i) $\int_{a}^{t} x^{n-1} h(x) d x \rightarrow \infty$,
(ii) $\lim \sup \left\{\int_{a}^{t} r(x) h(x)^{2} d x\right\}\left\{\int_{a}^{t} x^{n-1} h(x) d x\right\}^{-2}<\infty$ and
(iii) $t^{1-n} \int_{a}^{t} q(x)(t-x)^{n-1} d x \rightarrow \infty$,
then there is a number $b>a$ such that L is oscillatory on $[a, b]$.
Proof. Our proof will consist of proving that (i), (ii) and (iii) of Theorem 4 imply (ii) of Theorem 3. First we prove two lemmas.

Lemma 1. If f is a continuous, real-valued function on $[a, \infty)$ such that for some integer $p \geqq 0$,

$$
\lim _{t \rightarrow \infty} t^{-p} \int_{a}^{t} f(x)(t-x)^{p} d x=\infty
$$

then for each integer $k>p$,

$$
\lim _{t \rightarrow \infty} t^{-k} \int_{a}^{t} f(x)(t-x)^{k} d x=\infty
$$

Proof. A straightforward inductive proof using l'Hospital's rule is omitted.

Lemma 2. Suppose that (i) and (iii) of Theorem 4 hold, and that for $i=1, \cdots, n$,

$$
Q_{i}(t)=\int_{a}^{t} q(x)\left\{\int_{x}^{t}(s-x)^{n-1} h(s) d s\right\}(t-x)^{i-1} d x
$$

Then for $i=1, \cdots, n$ and as $t \rightarrow \infty$,

$$
\begin{equation*}
Q_{i}(t) / t^{i-1} \int_{a}^{t} x^{n-1} h(x) d x \rightarrow \infty \tag{10}
\end{equation*}
$$

Proof. For $i=1$ we have by (iii),

$$
\lim _{t \rightarrow \infty} Q_{1}^{\prime}(t) / t^{n-1} h(t)=\lim _{t \rightarrow \infty} t^{1-n} \int_{a}^{t} q(x)(t-x)^{n-1} d x=\infty
$$

Hence (10) holds.
Suppose (10) holds for some $i, 1 \leqq i<n$. Let M be a positive number. Since

$$
Q_{i+1}^{\prime}(t)=i Q_{i}(t)+\int_{a}^{t} q(x)(t-x)^{n+i-1} h(t) d x
$$

an application of the inductive hypothesis and Lemma 1 yields that for sufficiently large t, say $t \geqq t_{0}$,

$$
Q_{i+1}^{\prime}(t) \geqq M i t^{i-1} \int_{a}^{t} x^{n-1} h(x) d x+M t^{n+i-1} h(t)
$$

Hence for $t>t_{0}$,

$$
\begin{aligned}
Q_{i+1}(t) & \geqq Q_{i+1}\left(t_{0}\right)+M\left\{\int_{t_{0}}^{t}\left[i s^{i-1} \int_{a}^{s} x^{n-1} h(x) d x+s^{n+i-1} h(s)\right] d s\right\} \\
& =Q_{i+1}\left(t_{0}\right)+M\left(\int_{a}^{t_{0}} x^{n-1} h(x) d x\right)\left(t^{i}-t_{0}^{i}\right)+M t^{i} \int_{t_{0}}^{t} x^{n-1} h(x) d x
\end{aligned}
$$

The above inequality implies

$$
\liminf _{t \rightarrow \infty} Q_{i+1}(t) / t^{i} \int_{a}^{t} x^{n-1} h(x) d x \geqq M,
$$

from which we conclude that (10) holds for $i+1$.
That (ii) of Theorem 3 is a consequence of (i), (ii) and (iii) of Theorem 4 now follows by applying l'Hospital's rule and Lemma 2 to

$$
\begin{aligned}
& \lim _{t \rightarrow \infty}\left\{\int_{a}^{t} q(x)\left\{\int_{x}^{t}(s-x)^{n-1} h(s) d s\right\}^{2} d x\right\}\left\{\int_{a}^{t} x^{n-1} h(x) d x\right\}^{-2} \\
&=\lim _{t \rightarrow \infty} Q_{n}(t) / t^{n-1} \int_{a}^{t} x^{n-1} h(x) d x=\infty
\end{aligned}
$$

For $h=1 / r$, condition (i) implies (ii), and we obtain the following special case of Theorem 4.

Corollary 4.1. If $\int_{a}^{\infty} x^{n-1} r(x)^{-1} d x=\infty$ and

$$
\lim _{t \rightarrow \infty} t^{1-n} \int_{a}^{t} q(x)(t-x)^{n-1} d x=\infty
$$

then there is a number $b>a$ such that L is oscillatory on $[a, b]$.
For $n=1$, Corollary 4.1 gives the sufficient criterion of Leighton [3].
We note that Lemma 1 and Corollary 3.1 imply the previously mentioned result of Wintner for the equation $y^{\prime \prime}+q y=0$. That the condition

$$
t^{2} \int_{a}^{t} q(x)(t-x)^{2} d x \rightarrow \infty \text { as } t \rightarrow \infty
$$

is more general than Wintner's condition is shown by the following example.

Example. Let $w(t)=t^{2} \sin ^{2} t$ and let $q=w^{\prime \prime}$. It then follows that

$$
\int_{0}^{t} q(x) d x=w^{\prime}(t)=2 t \sin ^{2} t+t^{2} \sin 2 t
$$

$$
t^{-1} \int_{0}^{t} q(x)(t-x) d x=t \sin ^{2} t
$$

and

$$
t^{-2} \int_{0}^{t} q(x)(t-x)^{2} d x=t / 3-\left(1 / 2-1 / 4 t^{2}\right) \sin 2 t-(\cos 2 t) / 2 t
$$

Hence by Corollary 3.1, L(y)= $y^{\prime \prime}+q y$ is oscillatory.
We remark that Theorem 4 is not applicable in this example since condition (iii) does not hold.

References

1. D. Hinton, Clamped end boundary conditions for fourth-order self-adjoint differential equations, Duke Math. J. 34 (1967), 131-138.
2. W. Leighton, On the detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57-62.
3. -_ On self-adjoint differential equations of second order, J. London Math. Soc. 27 (1952), 37-47.
4. G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), 312-324.
5. W. T. Reid, Riccati matrix differential equations, Pacific J. Math. 13 (1963), 665-685.
6. A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115-117.

University of Georgia

[^0]: Presented to the Society, November 11, 1966; received by the editors December

