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For the second-order equation y" +qy = 0, Wintner [6] proved that

a sufficient condition for oscillation was that

(1) tr1 I    qix)it — x)dx—> oo     as t—> oo.

Independently Leighton [2] proved that a sufficient condition for

oscillation of iry')'+qy = 0 was that q he positive for sufficiently large

x and that

/OO /»   COrix)~xdx = oo    and      I     qix)dx = oo.

Subsequently Leighton [3] proved that conditions (2) were sufficient

without the restriction q be positive for sufficiently large x.

In this paper we prove analogous theorems for the linear equation

of order 2n 7r("))<") + (— l)n~1qy = 0. There will be nosign restrictions

on the function q. For n = l, the earlier results of Wintner and Leigh-

ton will be contained in our theorems. The results of this paper

parallel earlier results of the author for a fourth-order equation with

middle term [l].

Throughout r and q denote continuous, real-valued functions on a

ray [a, w) and r is assumed to be positive-valued. If the real-valued

function y has n continuous derivatives and ryM has n continuous

derivatives, then we define Liy) by:

(3) Liy) = (ry<»>)<») + (-l)"-1^-

Such a y is said to be admissible for L.

The operator L is called oscillatory on [a, b] il and only if there is

an admissible function y, y^O, and numbers c and d, a^c<d^b,

such that Liy) =0 and

(4) yic) = • • • = y<—»(e) = 0 = y(rf) = ■ ■ • = yC*-D(J).

Otherwise L is called nonoscillatory on [a, b].

For b>a, let CtQ?) denote the set of all real-valued y on [a, b] such
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that (a) y has n — 1 continuous derivatives on [a, b] with y<n_1) abso-

lutely continuous, (b) y(n) is essentially bounded (yM denotes the

almost everywhere derivative of y("_1)) and (c) y satisfies the bound-

ary conditions (4) with a = c and b=d.

The function A; is defined on Q(b) by:

(5) h(y) =   f   [r(x)y^(xY - q(x)y(x)i]dx.
J a

For our basic criterion of oscillation Ave consider a vector-matrix

formulation of L(y) = 0. Let the nXn matrices of functions A = [a,-,],

B= [ba] and C= [cfj] be defined by:

a,-,- = 0   if j — i ^ 1, ba = 0   if i ^ n or j t* n

= 1    iij — i = 1, = 1/r   if i = » and j = n

and

dj = 0       if z ^ 1 or j ^ 1,

= —q   if i = 1 andj = 1.

Then if A(y) = 0,

(6) , = [y(*'-1,]I=i    and    t - [{-l)"to^™]U

it is readily verified that

(7) v' = Ar, + B^,       ?' = CV - ATi)

where AT denotes the transpose of A.

Conversely, if (n, ^) is a pair of absolutely continuous real vector-

valued functions on [a, b] such that (7) hold almost everywhere, then

it follows that (7) hold everywhere, and the first component r,x of rj

is admissible for L and L(r\x) =0.
Reid [5, p. 673] has defined the system (7) to be oscillatory on

[a, b] if and only if there is a pair (v, £) of absolutely continuous

real or complex vector-valued functions on [a, b] such that (7) hold

almost everywhere, t/^0, and there are numbers c and d, a^c<d^b,

such that n(c) =0 = v(d). The one-to-one correspondence between

solutions y of L(y) =0 and the first components nx of solutions of (7)

proves that L is oscillatory on [a, b] if and only if (7) is oscillatory

on [a, b].
We remark that in the terminology of Reid [5, p. 673], the system

(7)  is identically normal on every subinterval of   [a,   oo)  since if
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in, £) is a solution and 77 = 0, then the first equation of (7) implies

£n = 0, and the second equation of (7) implies successively that

7,-i = 0, • • • , £,=0.
Our basic criterion for oscillation is the following:

Theorem 1. If there exists a yE&(b), yf^O, such that Ib(y) gO, then

L is oscillatory on [a, b].

Proof. We note first that C(x)r = C(7), Bix)T = Bix) and that

Bix) is nonnegative definite on [a, b]. Moreover, if yE^ib), v

— {y(<_1) }"=i» £ = {£<} where %n = ry{n) and £< = 0 otherwise, then

F#$ + rfCr, = riy^)2 - qy2.

Then in the terminology of Reid [5, p. 678], we have (r;, £)£2Do[<J, b],

rijkO and l[n, £; a, b]=Ibiy)^0. Thus by Theorem 5.2 of [5], L is

oscillatory on [a, b].

From Theorem 1 we obtain a comparison theorem for oscillation.

Theorem 2. If ri and qi are continuous, real-valued functions on

[a, b] with r\ positive-valued, yE&ib) is a nontrivial solution of Liy) = 0

and Liiy) = 7iy(!l))(n) + i — l)n~1(liy, Ihen Li is oscillatory on [a, b] if

(8)       j   [(rix) - riix))yMix)2 - iqix) - qiix))yix)2]dx ^ 0.

Proof. Let Jb he defined by the right-hand side of (5) where r and

q are replaced by ri and qi respectively. Then equation (8) reduces to

Ibiy)—Jbiy)=0. Integrating fliryMix))-yMix)dx by parts n times

proves that 7,(30 = (~ l)nfl L(y) -y(x)dx. Since L(y)=0, equation
(8) is equivalent to Jb(y) 3s 0. Theorem 1 now implies Li is oscillatory

on [a, b].

As a corollary we have a generalization of the Sturm-Picone The-

orem for second-order equations.

Corollary 2.1. If L is oscillatory on [a, b] and ri(x)^r(x) and

qi(x) s^q(x) for each x in [a, b], then Li is oscillatory on [a, b].

We now prove our principal theorem.

Theorem 3. // there is a positive-valued continuous function h on

[a, oo) such that as t—> oo,

(i) f'a x"~1h(x)dx—* oo  and

(ii) lim inf J(t) = — oo

where
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J(t) = \   f   ir(x) [(n-1) \h(x)]2- q(x) \   f   (s-x)"~ih(s)ds   1 dx

I    xn~1h(x)dx     ,

then there is a number b>a such that L is oscillatory on [a, b].

Proof. For each number t>a + l we construct a function yt on

[a, t] such that ytE&(t). For,some t sufficiently large, we will have

lt(yt)<0, thus proving Theorem 3.

For t>a + l, define zt on [a, t] by

Zt(x) =      f   (s - a:)"-1*^)^       f   s»-^(j)^      .

It is clear that for k = 0, • • • , n — 1,

[dkzt(x)/dxk]x=t = 0.

For fe = 0, • • • , n — 1, let

ctk = [dkzt(x)/dxk]x=a+x.

Application  of  l'Hospital's  rule  proves that cto~*1  and for k = l,

■ ■ • , n—1, Ctk-^0 as t—->oo.

Let pt he the polynomial

ii—i
pt(x) = (x — a)n 2 aixi

satisfying, for k = 0, ■ • • , n — 1,

(9) [dkpt(x)/dxk]x=a+x = ctt.

A simple calculation proves that for fe = 0, • • • , n — 1,

The w coefficients ao, • • • , a„-i are determined as solutions to the n

linear equations (9). The matrix of coefficients does not depend on t.

That the determinant of the matrix of coefficients is nonzero follows

from Theorem II of [4] and the fact that pt is a solution of the dif-

ferential equation y(2">=0. Hence a0, ■ ■ ■ , a„-X are bounded func-

tions of t. Define y' by:

yt(x) = pt(x) for a 5= x ^ a + 1 and yt(x) = zt(x) for a + 1 < x Si /.

Theny(e«(/).
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We have Itiy/)=Pit)+Kit), where

Pit) =  ("    [r{x)(p?\x))* - qix)ptix)-]dx

and

/> t [rix)iz\n\x)f - qix)ztix)2]dx.
a+i

Since a0, ■ ■ ■ , a„-i are  bounded  functions of t, Pit) = 0(1)   as

t—>oo. If M is a bound for r, q and h on [a, a + l], then

f      \<x)[in - l)\hix)}2 - qix) \   f  7 - x)"-1his)ds\ \ dx\

^ M i[in - l)\M}2 + j   f (5 - a)n-lhis)ds | 1 .

Hence as t—> oo,

f "    [r(ztB)(*))s - g(*)z,(*)2]^ = 0(1).
J a

Thus condition (ii) implies that lim inf Kit) = — oo as i—>oo. Hence

lim inf Itiy/) = — oo as /—>co. In particular, It(y/) <0 for some suffi-

ciently large t, thus proving Theorem 3.

For h=l, we have a useful corollary of Theorem 3.

Corollary 3.1. If

lim sup f~2n j    r(x)dx < oo,

and

lim r2n I   ?(a;)7 — s)2ndx = oo,
<->» ■'a

then for some b>a, L is oscillatory on [a, b].

A weaker but more applicable version of Theorem 3 may be stated

as follows:

Theorem 4. If there is a positive-valued continuous function h on

[a, oo) such that as t—* oo

(i) J'axn-1h(x)dx-^K,

(ii) Mm sup{par(x)h(x)2dx} {J'axn-1h(x)dx}-2 < oo and
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(iii) t1-nfaq(x)(t-x)n~1dx^oo>

then there is a number b>a such that L is oscillatory on [a, b].

Proof. Our proof will consist of proving that (i), (ii) and (iii) of

Theorem 4 imply (ii) of Theorem 3. First we prove two lemmas.

Lemma 1. If f is a continuous, real-valued function on [a, °o) such

that for some integer p^O,

lim tv I   f(x)(t — x)"dx = oo,
<—» J a

then for each integer k>p,

lim r* I   f(x)(t - x)kdx = oo .
(-.00 J   „

Proof. A straightforward inductive proof using l'Hospital's rule

is omitted.

Lemma 2. Suppose that (i) and (iii) of Theorem 4 hold, and that for

i=l, • • ■ , n,

Q<(t) =  I   ?(*) \  I   (s - x)"-1h(s)dsi (t - x)i~1dx.

Then for i=l, • ■ ■ , n and as t—>oo,

(10) Q>(l)/t1-1 f xn-%(x)dx -» oo.
J a

Proof. For i — 1 we have by (iii),

lim Ql(t)/tn-lh(t) = lim tx~n I    q(x)(t - x)n~ldx = co.
(—too (—►««/ a

Hence (10) holds.
Suppose (10) holds for some i, 1 ̂ i<n. Let M he a positive num-

ber. Since

QUi(t) = iQi(t) + f q(x)(t - x)»+^h(t)dx,
J a

an application of the inductive hypothesis and Lemma 1 yields that

for sufficiently large t, say t^to,

Qi+X(t) ̂  Mit*-1 I   xn~1h(x)dx + Mtn+i-lh(t).
•I a
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Hence for t>t0,

Qi+iit) ̂  Qi+iito) +M i f Iii*-1 j   xn-%ix)dx + sn+i-xhis)   \ds\

= (?<+i7o) + M ( I    x"~1hix)dx\ it* - tl) + Mt   I   xn~1hix)dx.

The above inequality implies

lim inf Qi+iiO/t* I   xn~1hix)dx ̂  M,
t—*<o J a

from which we conclude that (10) holds for i+1.

That (ii) of Theorem 3 is a consequence of (i), (ii) and (iii) of The-

orem 4 now follows by applying l'Hospital's rule and Lemma 2 to

lim <  I    qix) <  I    7 — x)n~1his)ds> dx> <  I    xn~%ix)dx>

= lim Qni^/t"-1 I    x"~1hix)dx = oo.

For h=l/r, condition (i) implies (ii), and we obtain the following

special case of Theorem 4.

Corollary 4.1. ///" xn~lrix)~1dx= oo and

lim tx~n f    q{x)it — x)"~1dx = oo,

then there is a number b>a such that L is oscillatory on [a, b].

For« = l, Corollary 4.1 gives the sufficient criterion of Leighton [3].

We note that Lemma 1 and Corollary 3.1 imply the previously

mentioned result of Wintner for the equation y"+qy = 0. That the

condition

tr2 I    qix)it — x)2dx—> oo  as /—> oo
J a

is more general than Wintner's condition is shown by the following

example.

Example. Let wit)=t2 sin2 t and let q = w". It then follows that

/qix)dx = w\t) = 21 sin21 + t2 sin 21,
o
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t"1 I    q(x)(t — x)dx = t sin21
•I o

and

r2 J    <?(*)(* - x)Hx = */3 - (1/2 - 1/4*2) sin 2/ - (cos 2/)/2*.
J o

Hence by Corollary 3.1, L(y) =y"+qy is oscillatory.

We remark that Theorem 4 is not applicable in this example since

condition (iii) does not hold.
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