A CRITERION FOR #-n OSCILLATIONS IN
DIFFERENTIAL EQUATIONS OF ORDER 2n

DON B. HINTON

For the second-order equation y’+gy =0, Wintner [6] proved that
a sufficient condition for oscillation was that

(1) t—‘f tq(x)(t —x)dx— o ast— «,

Independently Leighton [2] proved that a sufficient condition for
oscillation of (ry’)’+¢y =0 was that ¢ be positive for sufficiently large
x and that

2) fwr(x)“dx = o and qu(x)dx = .

Subsequently Leighton [3] proved that conditions (2) were sufficient
without the restriction ¢ be positive for sufficiently large x.

In this paper we prove analogous theorems for the linear equation
of order 2n (ry™)™ 4 (—1)~1gy =0. There will be nosign restrictions
on the function ¢g. For =1, the earlier results of Wintner and Leigh-
ton will be contained in our theorems. The results of this paper
parallel earlier results of the author for a fourth-order equation with
middle term [1].

Throughout 7 and ¢ denote continuous, real-valued functions on a
ray [a, =) and 7 is assumed to be positive-valued. If the real-valued
function y has # continuous derivatives and ry™ has » continuous
derivatives, then we define L(y) by:

©) L(y) = (ry™)™ + (=1)""gy.

Such a y is said to be admissible for L.

The operator L is called oscillatory on [a, b] if and only if there is
an admissible function y, y#£0, and numbers ¢ and d, a <c<d=<b,
such that L(y) =0 and

@ )= =y () =0 =y(d) = - =y"D().

Otherwise L is called nonoscillatory on [a, b].
For b>a, let @(b) denote the set of all real-valued y on [a, b] such
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that (a) ¥ has n—1 continuous derivatives on [a, b] with y»=1 abso-
lutely continuous, (b) y™ is essentially bounded (y™ denotes the
almost everywhere derivative of y»=1) and (c) y satisfies the bound-
ary conditions (4) with a=c and b=d.

The function I is defined on @ (b) by:

(5 T(y) = fa b[f(x)y‘"’(xV — g(*)y(x)?]dx.

For our basic criterion of oscillation we consider a vector-matrix
formulation of L(y)=0. Let the #X#n matrices of functions 4 = [a;;],
B=[b;;] and C= [ci;] be defined by:

a;; =0 ifj—1#1, bij =0 ifiZnorj=n
=1 ifj—1=1, =1/r fi=nandj=mn
and
cij =0 ifilorj=#1,
= —¢ ifi=1andj=1.
Then if L(y)=0,

T (n), (n—i)yn

©) n=D""T and &= [0y T,
it is readily verified that
(7 n =An+ B, £ =Cn— AT¢

where AT denotes the transpose of 4.

Conversely, if (g, £) is a pair of absolutely continuous real vector-
valued functions on [a, ] such that (7) hold almost everywhere, then
it follows that (7) hold everywhere, and the first component 7, of 7
is admissible for L and L(n) =0.

Reid [5, p. 673] has defined the system (7) to be oscillatory on
[a, b] if and only if there is a pair (5, £) of absolutely continuous
real or complex vector-valued functions on [, b] such that (7) hold
almost everywhere, 70, and there are numbers ¢ and d, a ¢ <d =,
such that %(c) =0=9(d). The one-to-one correspondence between
solutions y of L(y)=0 and the first components 7, of solutions of (7)
proves that L is oscillatory on [a, 8] if and only if (7) is oscillatory
on [a, b].

We remark that in the terminology of Reid [5, p. 673], the system
(7) is identically normal on every subinterval of [a, «) since if
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(n, £) is a solution and =0, then the first equation of (7) implies
£,=0, and the second equation of (7) implies successively that
£,1=0, - - -, £=0.

Our basic criterion for oscillation is the following:

THEOREM 1. If there exists a yE Q(b), y£0, such that I(y) <0, then
L is oscillatory on [a, b].

Proor. We note first that C(x)"=C(x), B(x)T=B(x) and that
B(x) is nonnegative definite on [a, b]. Moreover, if yE @), 13
= {y(i‘l) }Ll, E= {E;} where £, =ry™ and £;=0 otherwise, then

ETBE 4 97Cn = r(y™)? — gy*.

Then in the terminology of Reid [5, p. 678], we have (3, £) EDa, 0],
70 and I[n, £; a, b]=I,(y) £0. Thus by Theorem 5.2 of [5], L is
oscillatory on [a, b].

From Theorem 1 we obtain a comparison theorem for oscillation.

THEOREM 2. If r and g1 are continuous, real-valued functions on
[a, b] with r1 positive-valued, y & G (b) is a nontrivial solution of L(y) =0
and Li(y) = (riy™)®™ +(—1)n~1qyy, then L, is oscillatory on [a, b] if

b
®) f [(r(x) — 71(2)y™(@)* — (9(x) — q2(2))3(x)?]dx = ©.

PRrOOF. Let J; be defined by the right-hand side of (5) where r and
g are replaced by 7; and ¢ respectively. Then equation (8) reduces to
I(y) — J3(y) =0. Integrating [2(ry™(x))-y™ (x)dx by parts n times
proves that I(y)=(—1)*f2 L(y)-y(x)dx. Since L(y)=0, equation
(8) is equivalent to J;(v) 0. Theorem 1 now implies L, is oscillatory
on [a, b].

As a corollary we have a generalization of the Sturm-Picone The-
orem for second-order equations.

CoROLLARY 2.1. If L is oscillatory on [a, b] and r(x) <r(x) and
q1(x) = q(x) for each x in [a, b], then L, is oscillatory on [a, b].

We now prove our principal theorem.

THEOREM 3. If there is a positive-valued continuous function h on
[a, ©) such that as t— o0,

(i) Shxrh(x)dx— o and

@ii) lim inf J(f) = —
where
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so-[ [ L0300 | 1K (=it | | ax
[ f tx"“h(x)dx]—z,

then there is a number b>a such that L is oscillatory on [a, b].

Proofr. For each number ¢>a+41 we construct a function y, on
[a, t] such that y,Ea(t). For'some ¢ sufficiently large, we will have
I,(y;) <0, thus proving Theorem 3.

For t>a+1, define 3, on [a, t] by

o) = | / (s —x)n—1h<s>ds][ / 'sn-lh<s>ds]-l.

It is clear that for =0, - - -, n—1,
[d¥2.(x)/dx*] .t = 0.
For k=0, - - -, n—1, let
o = [d¥2(x)/d5*]mar1.

Application of I'Hospital’s rule proves that ¢,—1 and for k=1,
c,n—1,cyp—0ast— oo,
Let p, be the polynomial

pu) = (& — o) 2 a0

=0
satisfying, for k=0, - - -, n—1,
©) [*pu(2)/d5*)smar1 = cur.
A simple calculation proves that for £=0, - - -, n—1,
[@p(x) /d*]—a = O.
The 7 coefficients aq, - - - , @n—1 are determined as solutions to the »

linear equations (9). The matrix of coefficients does not depend on .
That the determinant of the matrix of coefficients is nonzero follows
from Theorem II of [4] and the fact that p, is a solution of the dif-
ferential equation y©@» =0. Hence a,, - - -, @,—1 are bounded func-
tions of ¢. Define y’ by:

ye(x) = pi(x) for a S x < a+ 1 and y,(x) = 2(x) fora+1 <z =&
Then y,EQ(2).

b
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We have I,(y.) =P (t)+K (), where
PO = f TR @) - (@p s
and
K0 = [ ;[r<x><z§"’<x)>2 — g(@)2(x) Jdz.

Since ag, + + +, @,—1 are bounded functions of ¢, P({)=0(1) as
t— . If M is a bound for 7, ¢ and % on [a, a+1], then

STt - vl - @] [ =i} as
M {[(n — 1)IM]2+ [fat(s - a)"“h(s)dsT} .

IIA

Hence as i— =,
a+1 9
[ @)~ @@ ’lar = o,

Thus condition (ii) implies that lim inf K(t) = — « as {— . Hence
lim inf I,(y,) = — « as t— . In particular, I,(y,;) <0 for some suffi-
ciently large ¢, thus proving Theorem 3.

For h=1, we have a useful corollary of Theorem 3.

CoroLLARY 3.1. If
i
lim sup l"?”f r(x)dx < =,
t—o o a
and

t
lim t*”‘f g(x)(t — x)ndx = o,

t—
then for some b>a, L is oscillatory on [a, b].

A weaker but more applicable version of Theorem 3 may be stated
as follows:

THEOREM 4. If there is a positive-valued continuous function b on
l[a, ) such that as t— »

(i) Jixmth(x)dz— oo,

(i) lim sup{ [} 7(x)h(x)dx} { [* x"1h(x)dx | =2 < o and
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(iii) =% q(x) (t—x)"'dx— oo,
then there is a number b>a such that L is oscillatory on [a, b].

Proor. Our proof will consist of proving that (i), (ii) and (iii) of
Theorem 4 imply (ii) of Theorem 3. First we prove two lemmas.

LemMA 1. If f is a continuous, real-valued function on [a, ) such
that for some integer p =0,

lim t—f'f tf(x)(t — x)?dx = o,

{— o0

then for each integer k> p,

{— 0

lim t"‘f tf(x)(t — 2)fdx = o,

Proor. A straightforward inductive proof using I'Hospital’s rule
is omitted.

LemMaA 2. Suppose that (i) and (iii) of Theorem 4 hold, and that for

i: 1’ o« o . , n’
t t
Q) = f g(x) { f (s — x)"“h(s)ds} (¢t — x)~'dx.
Then fori=1, - - -, nand as t—x,
t
(10) Qi(t)/ti1 f 1 h(x)dx — .
Proor. For =1 we have by (iii),

lim Qf (8)/t"h(t) = lim t“”f tq(x)(t — )" ldx = o,

1= 0

Hence (10) holds.
Suppose (10) holds for some 7, 1 £¢<n. Let M be a positive num-
ber. Since

0lua() = iQ:(t) + f (@)t — )™ 1h(l)da,

an application of the inductive hypothesis and Lemma 1 yields that
for sufficiently large ¢, say ¢ =¢,

t
0l = Mirt f w=h(x)dx + Me+=th(l).

a
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Hence for ¢>¢,,

Oini() = Qunlte) + M { f :[w—l f () dx + smHTh(s) :lds}

a

t

= Qira(to) + M< f tox"-lh(x)dx) ¢ — 1) + Mt' f 2 h(x)dx.

C
The above inequality implies

t
lim inf Q.~+1(l)/t"f 2 h(x)dx = M,

1=

from which we conclude that (10) holds for ¢41.
That (ii) of Theorem 3 is a consequence of (i), (ii) and (iii) of The-
orem 4 now follows by applying I’'Hospital’s rule and Lemma 2 to

lm { f ) { f s — x)"“h(s)ds} 2dx} { f tx”"’h(x)dx} -

= lim Q,,(t)/t”“f 'x"‘lh(x)dx = o,

{— o a

For h=1/r, condition (i) implies (ii), and we obtain the following
special case of Theorem 4.

COROLLARY 4.1. If [ x»lr(x)~ldx= o and
t
lim tl‘"f g(x)(t — x)"dx = oo,
1— o a
then there is a number b>a such that L is oscillatory on [a, b].

Forn =1, Corollary 4.1 gives the sufficient criterion of Leighton [3].

We note that Lemma 1 and Corollary 3.1 imply the previously
mentioned result of Wintner for the equation y’’+4¢y=0. That the
condition

t
t—2f g(x)(t — x)%dx— © as t— ©
a
is more general than Wintner’s condition is shown by the following

example.
ExaMpLE. Let w(f) =¢2 sin? ¢ and let g=w"’. It then follows that

t
f g(x)dx = w'(f) = 2tsin?{ -+ 2 sin 21,
0
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l“f tq(x)(t — x)dx = tsin?{
and
t—zf tq(x)(t — x)%dx = {/3 — (1/2 — 1/48) sin 2t — (cos 2§)/21.

Hence by Corollary 3.1, L(y) =y"'+q¢qy is oscillatory.
We remark that Theorem 4 is not applicable in this example since
condition (iii) does not hold.
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