ON EXTREMALS OF COMPOSITE VARIATIONAL PROBLEMS

DAVID A. SÁNCHEZ

The author has previously given existence theorems for functionals in the calculus of variations of the form

$$I[y] = \int_{-\infty}^{\infty} F(x, y(x), y'(x), p[y]) dx,$$

defined on a class K of absolutely continuous functions y whose derivatives are in $L^1(-\infty, \infty)$ and where p is a map from K into $L^1(-\infty, \infty)$. In this paper we develop, under suitable hypotheses, a necessary condition for extremals of such functionals.

Specifically, let F(x, y, d, p) be a real valued function of class C^1 on R^4 . Denote by C_b the normed linear space of bounded continuous functions on $-\infty < x < \infty$ with norm $||y|| = \sup |y(x)|$. Let A be the set of all bounded functions which are absolutely continuous on every interval and whose derivatives are in $L^1(-\infty, \infty)$. Evidently, A is a linear manifold of C_b .

Now let p be a map from A into $L^1(-\infty, \infty)$, and we assume that

- (i) the map p is Fréchet differentiable, and we denote its derivative at y by p'[y]:
- (ii) given y in A, then there exists a bounded function $K_y(x, t)$ in $L^1(\mathbb{R}^2)$ such that

$$p'[y]\phi = \int_{-\infty}^{\infty} K_{\nu}(x,t)\phi(t)dt$$

for any ϕ in A.

In view of the integrability of K_{ν} , it is evident that the above expression represents a function in $L^{1}(-\infty, \infty)$.

Finally let K, the class of admissible functions, consist of all elements of A for which F(x, y(x), y'(x), p[y]) is in $L^1(-\infty, \infty)$, and we assume K is nonempty. If boundary conditions are given, we further restrict K to consist of all functions satisfying the previous condition and the boundary conditions.

THEOREM. Under the assumptions given, suppose that

(a) there exist constants m > 0, $k \ge 1$ and B, such that $F(x, y, d, p) \ge m |d|^k - B$ for every (x, y, p), and

Presented to the Society, April 14, 1967 under the title A necessary condition for extremals of composite functionals; received by the editors March 4, 1967.

(b) there exists a positive function M(r), $0 < r < \infty$, and a bounded integrable function $\phi(x)$, $-\infty < x < \infty$, such that the partial derivatives F_y , F_d , and F_p satisfy

$$|F_y|, |F_d| \le M(r)(1+|d|^k+|p|), \quad x^2+y^2 \le r^2,$$

 $|F_p| \le \phi(x)(1+|d|^k+|p|), \quad \text{for any } y.$

Then if y_0 is an extremal in K for I[y], then almost everywhere on any finite interval $a \le x \le b$,

$$F_d(x) - \int_a^x \left[\int_{-\infty}^{\infty} K_{y_0}(s, r) F_p(s) ds + F_y(r) \right] dr = C,$$

a constant, where the partial derivatives are evaluated at yo.

PROOF. Given any interval [a, b] and any y in K, then F(x, y(x), y'(x), p[y]) is in $L^1(-\infty, \infty)$ hence is in $L^1[a, b]$, and (a) implies y' is in $L^k[a, b]$. Let η be any Lipschitz function having support in [a, b], then, by the properties of the Fréchet differential [6, pp. 35-43], we have for any real λ ,

$$p[y + \lambda \eta] = p[y] + \lambda p'[y] \eta + o(||\lambda \eta||)$$

and

$$p'[y]\eta = \frac{d}{d\lambda} p[y + \lambda \eta] \bigg|_{\lambda = 0} = \lim_{\lambda \to 0} \frac{p[y + \lambda \eta] - p[y]}{\lambda}.$$

The latter statement follows since existence of p'[y] implies the existence of the Gateaux or weak differential.

If $|\eta(x)|$, $|\eta'(x)| \le N$, $a \le x \le b$, and $|\lambda| \ll 1$, then by (b) the expressions

$$F_{\nu}(x, y_0 + \lambda \eta, y_0' + \lambda \eta', p[y_0 + \lambda \eta])\eta$$

and

$$F_d(x, y_0 + \lambda \eta, y_0' + \lambda \eta', p[y_0 + \lambda \eta])\eta'$$

are zero outside [a, b] and are dominated on [a, b] by

$$M(R)N[1 + |y_0' + \lambda \eta'|^k + |p[y_0 + \lambda \eta]|]$$

$$\leq M(R)N[1 + 2^{k-1}(|y_0'|^k + N^k) + |p[y_0]| + |p'[y_0]\eta| + o(1)],$$

where $x^2 + |y_0(x) + \lambda \eta(x)|^2 \le R^2$, $a \le x \le b$.

Furthermore the expression

$$F_n(x, y_0 + \lambda \eta, y_0' + \lambda \eta', p[y_0 + \lambda \eta])(d/d\lambda)p[y + \lambda \eta]$$

is dominated by the integrable expression

$$| \phi(x) | [1 + 2^{k-1}(|y_0'|^k + N^k) + |p[y_0]| + |p'[y_0]\eta| + o(1)](p'[y_0]\eta + o(1)).$$

Therefore $(d/d\lambda)I[y_0+\lambda\eta]|_{\lambda=0}$ exists and equals zero since y_0 is an extremal. Using the representation given for $p'[y_0]\eta$, this gives the expression

$$\int_{a}^{b} \left\{ \left[F_{\nu}(x) + \int_{-\infty}^{\infty} K_{\nu_{0}}(s, x) F_{\nu}(s) ds \right] \eta(x) + F_{d}(x) \eta'(x) \right\} dx = 0,$$

where the partials are evaluated at y_0 . The interchange of orders of integration is justified since K_{y_0} and η are bounded and F_p is integrable.

If $\zeta(x)$ is any bounded measurable function such that $\int_a^b \zeta(x) dx = 0$, then any Lipschitz function η with support in [a, b] is of the form

$$\eta(x) = \int_a^x \zeta(r)dr = -\int_x^b \zeta(r)dr,$$

and therefore the above expression becomes

$$\int_a^b \left\{ F_d(x) - \int_a^x \left[\int_{-\infty}^\infty K_{\nu_0}(s,r) F_{\nu}(s) ds + F_{\nu}(r) \right] dr \right\} \zeta(x) dx = 0.$$

This holds in particular for all C^{∞} functions $\zeta(x)$ with support in [a, b] and satisfying the above. We conclude that almost everywhere on [a, b]

$$F_d(x) - \int_a^x \left[\int_{-\infty}^{\infty} K_{\nu_0}(s, r) F_{\nu}(s) ds + F_{\nu}(r) \right] dr = C,$$

a constant, where the partial derivatives are evaluated at y_0 . This completes the proof.

If slightly stronger conditions are imposed on F and p, a smoothness condition of extremals is obtained as follows:

COROLLARY. Given the hypotheses of the theorem and the initial assumptions, suppose in addition that F is of class C^2 , $F_{dd} \neq 0$, and $p[y_0]$ is a continuous function for y_0 , an extremal of I[y] in K. Then y_0 is of class C^1 .

Proof. The necessary condition proved in the theorem may be written

$$F_d(x, y_0(x), y'_0(x), p[y_0]) = \int_a^x Q(r)dr + C$$
 a.e.

and the right side is absolutely continuous. By the added hypotheses, it follows that we may solve for $y_0'(x)$ in terms of x, $y_0(x)$, $p[y_0]$, and the right side; hence, $y_0'(x)$ equals a continuous function almost everywhere on [a, b]. It follows that $y_0'(x)$ equals a continuous function and hence y_0 is of class C^1 .

Finally suppose that p is a map from $L^1(-\infty, \infty)$ into itself and that the functional takes on the form

$$I_1[y] = \int_{-\infty}^{\infty} F(x, y(x), y'(x), p[y'](x)) dx.$$

In this case the admissible class K will be the same as before, and we assume the representation

$$p'[y']\phi' = \int_{-\infty}^{\infty} K_{y}(x,t)\phi'(t)dt,$$

valid for y in K and ϕ in A. As before, we assume $K_{\nu}(x, t)$ is bounded and in $L^{1}(\mathbb{R}^{2})$. We state the following necessary condition for an extremal: the proof is analogous to that of the theorem and is omitted.

COROLLARY. Suppose that y_0 in K is an extremal for $I_1[y]$, and the hypotheses of the theorem are satisfied. Then almost anywhere on any finite interval $a \le x \le b$

$$F_d(x) + \int_{-\infty}^{\infty} K_{\nu_0}(r,x) F_{\nu}(r) dr - \int_{-\infty}^{x} F_{\nu}(r) dr = C,$$

a constant, where the partial derivatives are evaluated at yo.

EXAMPLE. Let $F(x, y, d, p) = (1+d^2)^{1/2} + p^2/(1+x^2)$, and the hypotheses of the theorem are satisfied with m = k = 1, B = 0, M(r) = 1, and $\phi(x) = 1/(1+x^2)$. Let $p[y] = \int_{-\infty}^{\infty} g(x, t) y(t) dt$ where g is a continuous bounded function with compact support in R^2 . All the assumptions are satisfied and the necessary condition can be written

$$y_0'(x)[1+(y_0'(x))^2]^{-1/2}$$

$$+2\int_a^x \left\{ \int_{-\infty}^\infty \frac{g(s,r)}{1+s^2} \left[\int_{-\infty}^\infty g(s,t) y_0(t) dt \right] ds \right\} dr = C$$

where y_0 is an extremal in K.

For a discussion of similar results related to the ordinary problem

of calculus of variations the reader is referred to [1, pp. 28-29] and [5].

REFERENCES

- 1. C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966.
- 2. D. A. Sánchez, Calculus of variations for integrals depending on a convolution product, Ann. Scuola Norm. Sup. Pisa (3) 17 (1964), 233-254.
- 3. ——, On composite variational problems, J. Soc. Indust. Appl. Math. 14 (1966), 60-63.
- 4. ——, Some existence theorems in the calculus of variations, Pacific J. Math. 19 (1966), 357-363.
- 5. L. Tonelli, Sulle proprietà della estremanti, Ann. Scuola Norm. Sup. Pisa (2) 3 (1934), 213-237.
- 6. M. M. Vaınberg, Variational methods for the study of nonlinear operators, translated from Russian, Holden-Day, San Francisco, Calif., 1964.

University of California, Los Angeles