SIMPLE GROUPS ARE SCARCE
LARRY DORNHOFF

Even gross limits on the frequency of occurrence of finite simple
groups seem to be lacking in the mathematical literature. The follow-
ing theorem is offered as a first step in this direction.

I am indebted to E. L. Spitznagel for discussions leading to the
formulation of this problem.

THEOREM 1. Let r(x) denote the number of integers n<x such that
every group of order n has a mnormal Sylow subgroup. Then
limge,(r(x)/x) =1.

The proof requires only Sylow’s theorem from group theory, plus

the following two results from number theory. [x] denotes the great-
est integer in the number x.

THEOREM 2 [1, p. 356]. Let f(n) denote the number of prime factors
of n (distinct or not). For any 6>0, there exists xo such that, for all
X = %o, the number of integers n=<x satisfying | f(n)—log log nl > (log
log n)Y/2+8 45 less than ox.

THEOREM 3 [1, p. 351]. There is a constant B such that for any §>0,
there exists xq such that x Zx, implies

1
> — —loglogx — B| < 6.

psz
(Here the letter p is restricted to run through primes only.)

Proor oF THEOREM 1. Let €>0 be assigned. We wish to find X
such that for all X = X, 7(X) = (1 —€)X. Choose X so large that the
following conditions are all satisfied:

(1) If x=(X,)Y2—1, then the number of integers n<x with more
than log log n+ (log log #)#4 prime factors is <ex/4.

(2) If x=X,, then

log log x — log log log x — 4 log 2 . €
log log x + (log log x)%/4 + 1 4

(3) If x=X,, then log x> (1 —¢/4)~1-(4/¢).

(4) If x=log X,, then
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1
>, — —loglogx — B| < log 2.

psz

(5) If x=(Xo)Y2, then (1—e/4)x< [x].

Now choose X = X, and let J denote the set of integers # <X such
that every group of order » has a normal Sylow subgroup. We shall
show that the order of 3 is at least (1 —€)X, as required.

Let ® be the set of all primes p satisfying (log X)2<p=<X2. If p
is:in @, let M, denote the set of multiples of p less than or equal to X;
thus M,={p, 2p, - - -, [X/plp}. Then 1+p divides at most X/p?
members of M,, 14+2p divides at most X/2p* members of M, etc.
We find that at most

X 1 X X

— > —<—<log—+ 1>
PP asxip® M P P’

members of M, are divisible by a number of form 1-+%&p, £>0.

Let M, consist of those numbers # in M, such that # has at most
log log n+ (log log #)3/4+1 prime divisors. By (1), the order of A,
is at least (1—e/4)[X/p]. Hence, using Sylow’s theorem, the order
of M} N3 is at least (1—e/4) [X/p]— (X /p?) (log(X/p?) +1).

Any integer n < X is in M, for at most log log X 4+ (log log X)3/44-1
values of p. Using this fact, (5), (3), and (4) successively, we see that
the order of J is at least

EAC- DG 5l

log log X + (log log X)3/4 4+ 1

> X(l - _16/4 logPX>

(- i
- 4 /loglog X + (loglog X)34 41

1
> (1 _ Ef X pe® P
4 log log X 4+ (log log X)3/4 41

>

(1 3e> Xlog log X172 — loglog (log X)% — 2log 2

Iy log log X 4 (log logX)3/¢ + 1

Now log log XV/2=log log X —log 2 and log log(log X)2?=1og log log X
+log 2, so the order of J is at least (1—€)X by (2). Q.E.D.
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This proof is based on the “relatively large” primes between
(log X)? and X'/%. A proof cannot be based on the “very large” primes
greater than X'/2. The reason why is contained in Theorem 4 below,
which may be of independent number-theoretic interest.

In the following, w(x) denotes the number of primes less than or
equal to x. We use the fact that Z,.gz(l/n)—log x approaches a
constant limit (Euler’s constant) as x— « and also the prime number
theorem limg..(wr(x)/(x/log x)) =1.

THEOREM 4. If p(x) is the number of integers n<x with a prime
divisor greater than n''?, then lim...(p(x)/x) =log 2.

ProoOF. Let ¢>0 be assigned. We shall show that there exists N,
such that for all integers N = N,,

| (p(2N) — p(NV)) — Nlog2| < eN.

This is sufficient. We may assume e <3.

We note that lim.i+((1/(x—1))/(1/log x))=1, but x/(x—1)
>1/log x for x>1. Hence we may choose £>1 with ((k—1)/k)
-(1/log k)>1—¢/6 and k<1-+e¢/48. We also choose r such that
7/(k—1) =¢€/6.

Note that by the prime number theorem, as x— o, 7w (kx) —7(x)
is asymptotic to

kx x x . log « )
logkx logx logx( logk 4+ log = )’
and so asymptotic to (k—1)x/log x.

Choose N, sufficiently large so that

(6) For Mz=(NoV*/k, (k—1—71)M/log M=7(kM)—7(M)=
(k—1+47)M/log M.

(7) For N2 N,, 7(2N) —7w(N) <(e-log 2/6)N.

(8) If N=N, and s= [logi, N'2], then 1—¢/6<(s—1)/s.

(9) With s as in (8), we have ll/s+1/(s+1)+ s F+1/(2s—1)
—log 2] <e-log 2/6.

Let N be any integer greater than or equal to Ny, and define in-
tegers L and T by kL= N2, RL+1> N2 T < (2N)2, kT+H > (2N)12,
If M is any number M= N2, consider primes p satisfying M <p
<EM. There are w(kM)—mx(M) such primes. If p is such, then the
number of multiples of p between N and 2N is at least [N/kM] and
not more than N/M+1.

By choosing M =k!-(2N)¥2, t=0, 1, - - -, T'—1, and using (6),
we see that
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T—1 kl. ZA 1/2 J\T
(10) pEN) — p(V) 2 3 (= 1= 1)k (

—1).
= log Bt (2N)12 \ k1 (2 V) 1/ )
By choosing M =k*- N2 t=0,1, - - -, L, we also see that

L

Bt ()2 N
FCURFOEDEEE ( )

+
pr og kt-(N)V2 \kt-(N)1/2
+ 7#(2N) — #(N).

Using (6) and cancellation, (10) becomes

am (V)\k—1—rk—1NT§ 1
? P = E—1 k

=0 log(2N)1/2 + tlog k
— (7(2N) — =()).
Using (7) and the definitions of 7 and &, we get

(2N) — p(V) = (1 26)1 > !
— = — 0 . .
- ? P = 6/) ¢ = 1og2N)'* + Llog £

elog 2
6

N.

Now k7= (2N)V2, Pick ko such that kf = (2N)'2. Since ko= k, we

may replace log & by log %, in the summation of (12) and preserve
the inequality. We get

2 7-1 1 -log 2
p<2N)—zJ<N);(1—-§)logk-N- > L

t=0 (T‘l‘t) lngo 6
=(1__265>10gk N'E 1 _e-logZ

log % '

N.
— T+t 6
Since kT+!> (2N)!/2, we use (8) to see that
logk  (1/(T + 1)) log (2N)1/2 T 51 €
log ko (1/T) log @N)Y2 T + 1 6
By (9),
-1
2

e-log 2 €
> log 2 — = log 2 1——).
o T+t 6 6

Therefore we conclude that

1) p(2N) — p(N) > (1 — 4¢/6) log 2- N — (e-log 2/6) N
> (1 —¢log2-N.
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Now k—1+47<2(k—1—7). Hence, using (11), (6), and the facts
k<1+4€/48, log 2>1, we easily get

L—1 kt. N1/2 N
2N) — < - .
p(2N) — p(N) < E(k 1+7) Ty TTT:
elog 2
6
k—1+7k—1 -1 1
= . “EN-
E—1 k t—0 log NU2 -4 tlog &
4e-log 2
€-log N
6

+ 3(x(2N) — =(N)) + N

EL< N'2 Hence L log k<log N2, and the inequality is preserved
if we replace log N'/2 by L log k. Therefore
e\logk L' 1 4e-log 2
O

€
2N) —p(N) =11 — 1 — . N
P(21) p()_(+6)(+48 ) R

() e
= 48 6 8 6

< (14 eNlog2.

This together with (13) gives the result.

ApDED IN Proor. P. T. Bateman has kindly pointed out that
Theorem 4 is a special case of several results mentioned in Math.
Rev. 34 (1967), #5770.
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