
SIMPLE GROUPS ARE SCARCE

LARRY DORNHOFF

Even gross limits on the frequency of occurrence of finite simple

groups seem to be lacking in the mathematical literature. The follow-

ing theorem is offered as a first step in this direction.

I am indebted to E. L. Spitznagel for discussions leading to the

formulation of this problem.

Theorem 1. Let r(x) denote the number of integers n^x such that

every group of order n has a normal Sylow subgroup. Then

lim„00(r(x)/x) = l.

The proof requires only Sylow's theorem from group theory, plus

the following two results from number theory, [x] denotes the great-

est integer in the number x.

Theorem 2 [l, p. 356]. Letf(n) denote the number of prime factors

of n (distinct or not). For any 8>0, there exists Xo such that, for all

xj^Xo, the number of integers n^x satisfying \f(n)— log log n\ > (log

log n)ll2+t is less than 8x.

Theorem 3 [l, p. 351 ]. There is a constant B such that for any 5> 0,

there exists Xo such that x ^ x0 implies

X)-log log x - B   < 5.
pix    P

(Here the letter p is restricted to run through primes only.)

Proof of Theorem 1. Let e>0 be assigned. We wish to find X0

such that for all A^ X0, r(X) ^ (1 — e)X. Choose X0 so large that the

following conditions are all satisfied:

(1) If xii (X0)1/2 — 1, then the number of integers ragx with more

than log log K + (log log «)3/4 prime factors is <ex/4.

(2) If x^Ao, then

log log x — log log log x — 4 log 2 e

log log x + (log log x)3/4 +1 4

(3) If x^Ao, then log xXl-e/4)-1- (4/e).

(4) If x^ log X0, then
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E-log log x — 73   < log 2.
Pix    P

(5) If x^(A7)1/2, then (l-e/4)x< [x].

Now choose X^X0 and let 3 denote the set of integers n^X such

that every group of order n has a normal Sylow subgroup. We shall

show that the order of 3 is at least (1 — e)X, as required.

Let <S> be the set of all primes p satisfying (log X)2<p^X112. If p

is'in 0°, let MP denote the set of multiples of p less than or equal to X;

thus Mp= {p, 2p, ■ • ■ , [X/p]p}. Then 1+p divides at most X/p2

members of Mp, l+2p divides at most X/2p2 members of Mp, etc.

We find that at most

X    _    1       X(      X       \— E —<—(log—+ i)
P2 ,SI,f'   M P\ p2 )

members of Mp are divisible by a number of form 1+kp, k>0.

Let Mp' consist of those numbers m in Mp such that n has at most

log log M + (log log m)3/4+1 prime divisors. By (1), the order of Mp

is at least (1— e/4) [X/p]. Hence, using Sylow's theorem, the order

of Af,T\3 is at least (l-e/4) [X/p]-iX/p2)QogiX/p2)+l).
Any integer m gX is in Mp lor at most log log X+ (log log X)3I*+1

values of p. Using this fact, (5), (3), and (4) successively, we see that

the order of 3 is at least

lU('-f)[|B('^0}
log log X+ (loglogX)3/4 + 1

T.-U-— ^)
H     " 4/log log X + (loglogr)3/4+ 1

E-^
>(i--)x-*°*-
~\        4/     log log Z+ (loglogX)3/4+ 1

>/        3A     loglogX'/' - log log (log X)2 - 21og2

- V   ~ 4 / log log X + (log logX)3'4 + 1

Now log log X112 = log log X—log 2 and log log (log X)2 = log log log X

+log 2, so the order of 3 is at least (l-e)Z by (2).    Q.E.D.
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This proof is based on the "relatively large" primes between

(log A)2 and A1'2. A proof cannot be based on the "very large" primes

greater than A1'2. The reason why is contained in Theorem 4 below,

which may be of independent number-theoretic interest.

In the following, 7r(x) denotes the number of primes less than or

equal to x. We use the fact that ^,n£x(l/n) — log x approaches a

constant limit (Euler's constant) as x—» oo and also the prime number

theorem limx^.00(7r(x)/(x/log x)) = l.

Theorem 4. If p(x) is the number of integers n^x with a prime

divisor greater than n1'2, then limI^.00(p(x)/x) =log 2.

Proof. Let e>0 be assigned. We shall show that there exists A0

such that for all integers ASiA0,

| (p(2N) - p(N)) - A log 2 |  < eA.

This is sufficient. We may assume e<f.

We note that linw+((l/(x-l))/(l/log x)) = l, but x/(x-l)

>l/log x for x>l. Hence we may choose k>l with ((k — l)/k)

■(1/log &)>1—e/6 and £<l+e/48. We also choose r such that

r/(k-l)=e/6.
Note that by the prime number theorem, as x—»=°, ir(kx) — w(x)

is asymptotic to

kx           x            x    /           log x \
-=-(k---1),
log kx     log x     log x \   log k + log X        /

and so asymptotic to (k — l)x/log x.

Choose A0 sufficiently large so that

(6) For M^(NoY'2/k, (k-l-r)M/log M^ir(kM)—ir(M) g

(jfe-l+T)Jlf/log M.
(7) For A^Ao, 7r(2A)-7r(A)<(e-log 2/6)A.

(8) If A^A0 and 5= [log* A1'2], then l-e/6<(s-l)/s.

(9) With 5 as in (8), we have 11/5 + 1/(5 + 1) + • • • +1/(25-1)

-log 21 <e-log2/6.
Let A be any integer greater than or equal to A0, and define in-

tegers L and T by Jfe^A1'2, k^yN1'2, kT^(2Nyi\ kT+1>(2N)1'2.

If M is any number ikf^A1'2, consider primes p satisfying M<p

^kM. There are ir(kM)—7r(M) such primes. If p is such, then the

number of multiples of p between A and 2 A is at least [N/kM] and

not more than N/M+l.
By choosing M = k'- (2A)1'2, t = 0, 1, ■ ■ ■ , T-l, and using (6),

we see that
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T-i kt-i2N)1'2    /       N \
(10) pi2N) -piN) ^T,(k~ 1-r)-—-(-1).

Zt logk'-i2N)1i2\k'+1i2N)1i2       )

By choosing M = k'-N112, t = 0, 1, • • • , L, we also see that

^                           k'-iN)1'2     /      N \
pi2N) - piN) < E (k ~ 1 + t)-(-h 1 )

(11) F ¥y to J logk'-iN)1'2 Kk'-iN)1'2        J

+ wi2N) - iriN).

Using (6) and cancellation, (10) becomes

k-l-r k-l       ^J 1
pi2N) - piN) ^-TV- E-

k-l k U\ogi2N)1i2 + tlogk

- (7r(27V) - 7r(iV)).

Using (7) and the definitions of r and k, we get

pi2N) - piN) ^ (l - ^) logk-N- E .    , *,   ,,     .
\        6/ ,=o log(2TV)1/2 + tlogk

( IZ)
e-log 2

-— N.
6

Now kT^i2Ny'2. Pick &0 such that ^= (22V)1'2. Since £0^&, we

may replace log k by log k0 in the summation of (12) and preserve

the inequality. We get

/ 2e\ t,1 1 e-log2
p(2N)-p(N)*(l--r)logk-N-'Z -f-N

\        6 / ,_o (T + /) log &0 6

/ 2«\logJfe »hj      1 e-log 2

\        6 / log k0 Zi T+t 6

Since /fer+1> (27V)1/2, we use (8) to see that

log k       il/iT + 1)) log (27V)1'2 _       7" e

log 7, (l/r)log(2/V)1/2        " T+l 6

By (9),

t!       1 «-log2 / «\
ETT7>loS2—_-„,(,-_).

Therefore we conclude that

/.(27V) - /.(TV) > (1 - 4e/6) log 2-TV - (e.log 2/6)TV

> (1 - e)log2-/V.
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Now k — l+T<2(k — l—T). Hence, using (11), (6), and the facts

fe<l+e/48, log 2>|, we easily get

^ k'-N1'2 N
p(2N) -p(N)^^(k-l + r)-——-.-——

t_o log k'-N112   k'-N112

e-log 2
+ 3(tt(2A) - t(A0) +-— N

6

*-1+rk-1 ^ 1
g---kN- £ —-■-

k - 1 k Zo log A1'2 + t log k

4e-log 2
+-— A.

6

kL^N112. Hence L log &:Slog A1'2, and the inequality is preserved

if we replace log A1'2 by L log k. Therefore

/ e\/ e\log£       *=J      1 4e-log2
p(2A)-p(A)^(l + -)(l + -)r^-A-E—-- + —-f-N

\        6 / \        48/ log k        (_o L + t 6

/ «\/ e\ 4e-log 2

< (1 + e) A log 2.

This together with (13) gives the result.

Added in Proof. P. T. Bateman has kindly pointed out that

Theorem 4 is a special case of several results mentioned in Math.

Rev. 34 (1967), #5770.
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