EXTENSION OF COHERENT ANALYTIC SUBSHEAVES

YUM-TONG SIU

In this note we prove the following result.

THEOREM. Suppose 3 is a coherent analytic sheaf on a Stein space (X, \mathcal{R}) in the sense of Grauert [2, §1] and 8 is a coherent analytic subsheaf of $\mathfrak{I}|U$ for some open neighborhood U of the boundary ∂X of X. If for every $x \in U$, S_x , as a \mathfrak{I}_x -submodule of \mathfrak{I}_x , has no associated prime ideal of dimension ≤ 1 , then there exists a coherent analytic subsheaf S^* of 3 on (X, \mathcal{R}) such that S^* agrees with 8 on some open neighborhood of ∂X .

This theorem extends [3, Chapter VII.D.6].

Notations. codh denotes homological codimension. D(5) denotes $\{x \in X \mid \operatorname{codh}_{\mathcal{R}_x} \mathfrak{I}_x < 3\}$. For r > 0, $R_r = \{z \in \mathbb{C}^n \mid (\sum_{i=1}^n |z_i|^2)^{1/2} < r\}$. For s > r > 0, $R_{r,s} = R_s - R_r^-$, where r = 1 denotes topological closure.

LEMMA. Suppose $\mathfrak{M} \subset \mathfrak{O}(G)^p$ is a coherent subsheaf, where $\mathfrak{O}(G)$ is the structure sheaf of an open subset G of \mathbb{C}^n $(n \ge 3)$ and

(*) \mathfrak{M}_x as an $\mathfrak{O}(G)_x$ -submodule of $\mathfrak{O}(G)_x^p$ has no associated prime ideal of dim ≤ 1 for every $x \in G$.

Then $D(\mathfrak{M})$ is either discrete or empty.

Proof. Suppose not. Since $D(\mathfrak{M})$ is a subvariety in G [5, Satz 5] there is an irreducible 1-dimensional subvariety Z in a connected Stein open subset H of G such that $Z \subset D(\mathfrak{M})$. Take a holomorphic function $f \not\equiv 0$ on H vanishing on Z. Take $x \in \mathbb{Z}$. $f_x\mathfrak{M}_x$ as an $\mathfrak{O}(G)_x$ -submodule of \mathfrak{M}_x has no associated prime ideal of dimension ≤ 1 , for otherwise there is a prime ideal P in $O(G)_x$ of dim ≤ 1 and $s \in \mathfrak{M}_x$ such that $sP^k \subset f_x \mathfrak{M}_x$ for some k and $s \notin f_x \mathfrak{M}_x$. The meromorphic functiongerm sf_x^{-1} is holomorphic, because it is holomorphic outside a subvariety-germ of codim ≥ 2 . $sf_x^{-1}P^k \subset \mathfrak{M}_x$ and $sf_x^{-1} \notin \mathfrak{M}_x$. (*) is contradicted. Take a holomorphic function g defined in some open neighborhood W of x in H and vanishing on $Z \cap W$ such that g_x does not belong to any associated prime ideal of $f_x\mathfrak{M}_x$ as an $\mathfrak{O}(G)_x$ -submodule of \mathfrak{M}_x . g_x is not a zero-divisor for $\mathfrak{M}_x/f_x\mathfrak{M}_x$. By coherence of the kernel of the sheaf-homomorphism $\mathfrak{M}/f\mathfrak{M} \rightarrow \mathfrak{M}/f\mathfrak{M}$ defined by multiplication by g, after shrinking of W we can assume that g_y is not a zero-divisor for $\mathfrak{M}_y/f_y\mathfrak{M}_y$ for $y \in W$. Since $Y = \{y \in W \mid \operatorname{codh} (\mathfrak{M}/(f\mathfrak{M} + g\mathfrak{M}))_y \leq 0\}$

Received by the editors July 10, 1967.

is at most zero-dimensional [5, Satz 5], $\exists z \in (Z \cap W) - Y$. Then $\operatorname{codh} \mathfrak{M}_z \geq 3$. Contradiction, q.e.d.

PROOF OF THEOREM. K = X - U is compact. By replacing X by a relatively compact Stein neighborhood of K, we can assume w.l.o.g. that X is a complex subspace of \mathbb{C}^n with $n \ge 3$ (Einbettungssatz, [6]) and we have a sheaf-epimorphism $h: \mathbb{O}^p \to \mathfrak{I}$, where \mathfrak{I} is the trivial extension of 3 on \mathbb{C}^n and 0 is the structure sheaf of \mathbb{C}^n . By replacing X by C^n and S by $h^{-1}(\tilde{S})$, where \tilde{S} is the trivial extension of S on $C^n - K$, we can assume w.l.o.g. that $X = \mathbb{C}^n$ and $\mathfrak{I} = \mathfrak{O}^p$. By the lemma we can choose s > r > d > 0 such that $R_{r-d} \supset K$ and $D(s) \cap R_{r-d,s+d} = \emptyset$. For some 0 < a, b < d, the restriction map $H^1(R_{r-a,s+b}, S) \rightarrow H^1(R_{r,s}, S)$ is surjective [1, Propositions 16 and 17, §17]. $\dim_{\mathbb{C}} H^1(R_{r,s}, S) < \infty$ (cf. the proof of Theorem 11, $|1, \S17|$). Take $x \in R_{r,s}$ and a complexlinear function f on \mathbb{C}^n such that f(x) = 0 and the set V of zeroes of f is disjoint from R_r^- . The exact sequence $0 \rightarrow \$ \xrightarrow{u} \$ \rightarrow \$ / f\$ \rightarrow 0$, where u is defined by multiplication by f, yields the exact sequence $\Gamma(R_{r,s}, \S)$ $\stackrel{r}{\rightarrow} \Gamma(R_{r,s}, S/fS) \rightarrow H^1(R_{r,s}, S) \rightarrow H^1(R_{r,s}, S) \rightarrow H^1(R_{r,s}, S/fS)$. Since $V \cap R_{r,s}$ is Stein, $H^1(R_{r,s}, S/fS) = 0$. dim_C $H^1(R_{r,s}, S) < \infty$ implies that v is surjective. Let m be the maximal ideal of O_x . w: $\Gamma(R_{r,s}, S/fS)$ $\rightarrow S_x/mS_x$ is surjective, because $V \cap R_{r,s}$ is Stein. $w \circ v$ is surjective. By Krull-Azumaya Lemma [4, (4.1)], $\Gamma(R_{r,s}, S)$ generates S_x . Since x is arbitrary, S restricted to $R_{r,s}$ is generated by sections on $R_{r,s}$. Extensions of elements of $\Gamma(R_{r,s}, S)$ form a subset S of $\Gamma(R_s, O^p)$. S generates a coherent subsheaf \mathcal{F} of 3 on R_s . Define S^* to be \mathcal{F} on R_s and to be S on $\mathbb{C}^n - \mathbb{R}_r^-$. Then S* is the required extension, q.e.d.

REFERENCES

- 1. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France. 90 (1962), 193-259.
- 2. H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960).
- 3. R. C. Gunning, and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
 - 4. M. Nagata, Local rings, Interscience, New York, 1962.
- 5. G. Scheja, Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung, Math. Ann. 157 (1964), 75-94.
- 6. K.-W. Wiegmann, Einbettungen komplexer Räume in Zahlenräume, Invent. Math. 1 (1966), 229-243.

University of Notre Dame