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0. Introduction. In Valentine [l, p. 183] the problem of charac-

terizing starshaped sets in terms of maximal convex sets was posed.

One published solution says that the convex kernel of a set is the

intersection of all the maximal convex subsets of the set [2, p. 280].

In this paper we investigate the analogous problem of describing the

intersection of all maximal starshaped subsets of a set. A maximal

starshaped subset A of a set Y is a starshaped subset of Y which is not

properly contained in any other starshaped subset of Y. Since the

property of being starshaped is not an intersectional property, it

seems unlikely that the intersection of maximal starshaped subsets

of a given set would be starshaped. Indeed, the following example

shows the situation to be even more complex than merely absence of

the intersectional property.

Let r„={(x, y)|w — l^y^w, n — x^y}, and Sn=(J?=xTi; then

5„ is starshaped with convex kernel, ck(5„), equal to Kn = {(x, y) | 0

^y ^l,w-x^y}. If 5 = 11;,! 5n, then ck(5)CU„"=1 ck(5„) = 0. Thus
5 is not starshaped even though it is the union of an ascending chain

of starshaped sets. Furthermore, 5 has no maximal starshaped sub-

sets. If MCS were a maximal starshaped subset, then there would be

at least one point (x, y) £ck(Af). In fact M would be precisely the set

of points that (x, y) sees via 5. However, the point (x + 1, y) sees

every point which (x, y) does, and more. Thus M is not maximal.

In contrast with the preceding example, it is shown in §1 that com-

pact subsets of Euclidean space, £", have maximal starshaped sub-

sets. In §2, it is shown that the intersection of the maximal starshaped

subsets in a suitably restricted setting is starshaped.

1. Existence of maximal starshaped sets. Let 5 be a compact set

in E" and let J denote the family of all classes C of maximal convex

subsets of 5 for which V\C^0. Observe that a maximal convex sub-

set of 5 is compact. We note two properties of SF. First, if D is a finite

subclass of some C£3: then 0^nCCO.D, so Z>£5\ Also, if C is a class

of sets such that each finite subclass is in J, then C£5 by compact-

ness and the definition of SF. Thus ff is a family of finite character.

Theorem 1.1. There exists a maximal starshaped subset T of any

compact set S in E" and every maximal starshaped subset is closed.
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Proof. By the preceding, Tukey's Lemma gives a maximal class

C of maximal convex subsets of 5 for which f)C^0. Let T = UC;

by using the fact that a starshaped set is the union of its maximal

convex subsets, we see that T is indeed a maximal starshaped subset

of S. Noting that the closure, T~, is starshaped and T~ES, we see

that T=T~. That is, T is closed.

Corollary 1.2. If SEE" is compact and B is any starshaped subset

of S, then there exists a maximal starshaped subset TES such that BET.

Proof. Express B as the union of its maximal convex subsets; then

let T = U C, where C is one maximal class of maximal convex subsets of

5 with r\C?£0, at least one member containing each one of the maxi-

mal convex subsets of B.

2. Intersections of maximal starshaped sets in the plane. Here-

after 5 is always taken to be a compact simply connected set in the

plane. Likewise Sa, a in an index set I, will represent a maximal star-

shaped subset of S; and A is taken to be the intersection of all the

maximal starshaped subsets of S, i.e. A = f)aei Sa. We note that A,

perhaps empty, is closed and thus compact.

Particular notations are as follows: pq denotes the closed segment

established by the points p and q; Apqr denotes the convex hull of

the three points, p, q, and r; Lip, q) is the line established by the

points p and q; and kCpq denotes the cone opposite p and q with vertex

ft, i.e. kCpq= {x\x = \p+pq+vk, \+p+v = l, X^O, p^O}.

Lemma 2.1. If p, qEA, then pqEA if and only if pqES.

Proof. The "only if" part is immediate. If pqES and fteck(5„),

then we have pq\Jqk\JkpES. So ApqkES. This means that ft sees

all of Apqk, so S</UApqk is a starshaped subset of 5 having ft in its

kernel. Consequently we have pqESa by the maximality of Sa. That

is pqEA.
Observe that simple connectedness and a standard sequence argu-

ment gives the following. If p, qEA and pq($_A, then the set of points,

B, that see p and q via 5 is a compact set contained in one of the

open half planes of Lip, q).

Lemma 2.2. The set B, as given above, contains a unique element which

is closest to L(j>, q).

Proof. Since the distance from points of B to Lip, q) is a positive

continuous function defined on a compact set, we observe that a

closest point exists. Distinct closest points x and y in B establish
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L(x, y) parallel to L(p, q). Adjusted notation, if necessary, gives

xqC\yp to be a point of B closer than the minimum distance.

Lemma 2.3. Every pair of points of A can be joined in A by a polyg-

onal path of no more than two edges.

Proof. If p, qEA and pq(X.A, let m be the unique point of Lemma

2.2. If &£ck(5a), we have kEmCpq. But simple connectedness of 5

gives the quadrilateral kpmq and its interior to be a subset of 5.

Now k sees m, so pm\JmqCSa. Since a was arbitrary, it follows that

pmSJmqCA.

Theorem 2.4. The intersection of the maximal starshaped subsets of

a compact, simply connected set in E2 is starshaped or empty.

Proof. Let p, q, r be three points of A such that no point of A sees

all three points via A. Otherwise Krasnoselskii's Theorem says that

A is starshaped [l].

For the first case assume that p, q, and r are collinear with q

between p and r.

By our initial assumption pr($_A; suppose qr(£A and pqCA. Then

Lemma 2.2 establishes a point m closest to L(q, r) and Theorem 2.3

yields qmSJmrCA. As before ck(5a)CmCar for any a. If &£ck(5A,

we have pk\Jkq\JrkCS. Simple connectedness gives pmCS. Thus,

Lemma 2.1 says pmCA and the resulting contradiction—pmKJmq

yJmrCA—assures that pq(T.A. Similarly qrC^A.

Let us now assume that none of the segments between p, q, and r

is contained in A. Again Lemma 2.2 establishes a point m closest to

L(p, r) ior the points p and r with pmXJmrCA. Select /fe£ck(5„) and

note that kEmCpr. limEkq, we have a contradiction, so assume that

kqC\(rm\Jpm) is a point distinct from m. Without loss of generality

let the point of intersection be on rm. Now apply Lemma 2.2 to

establish a point n closest to L(p, q). The point w must be such that

kEnCpq, i.e. nE&pkq. Extend qm to intersect pk in a point j. If

nE&pqj, we observe that mqCA, a contradiction. Otherwise, either

nrCA or nq extended to intersect mr yields a point of A that sees

p, q and r via A.

We now observe that all the above excludes the possibility of

p, q and r being collinear.

Since p, q and r are not collinear, we employ them as a barycentric

basis to describe regions of the plane. For example, a ( + , —, 0)

point k is such that k = ap +8q +yr with a+B+y = l and a>0,

8<0,y = 0.
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Suppose fteck(SQ); two cases are trivial—namely (0, 0, +) and

(0, +, +). Particular permutations of these sign symbols are assumed

without loss of generality. The three cases (0, —, +), ( + , —, +)

and ( —, +, —) are disposed of simultaneously (i) with a proof identi-

cal in wording to the paragraph that dispenses with p, q and r being

collinear and none of their segments in A, and (ii) with minor modifi-

cations for the cases in which one of the segments pq, qr, pr is in A.

The final possibility is for fteck(5„) tobea ( + , +, +)-point. Here

Lemma 2.2 and Theorem 2.3 assure us that kpKJkqVJkr is contained

in a "three-pointed star region" all of whose edges are segments of A.

Simple connectedness and Lemma 2.1 ensure that this region (and,

in particular kpVJkqVJkr) is a subset of A.
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