
LOCAL QUOTIENT RINGS1

M.SATYANARAYANA

1. Introduction. In the works of Goldie [6] and [7], Small [9] and

Talintyre [ll] and [12] one finds the conditions for a ring to have a

semisimple, simple or right Artinian right quotient rings. There also

exist rings with right quotient ring as a local ring. The main aim of

this paper is to investigate the conditions for a ring to have a local

quotient ring and thus provide methods for the construction of non-

commutative local rings.

Definitions. A ring R with identity is called a LOCAL RING if

R has a unique maximal right ideal M or equivalently, sum of any

two nonunits is a nonunit. We denote the local ring by (R, M).

Trivially division rings are local rings.

A ring R with identity is said to have a RIGHT QUOTIENT
RING Q if (i) PCQ, (ii) every nonzero divisor (regular element) in R

has a two-sided inverse in Q and (iii) every qEQ can be written in

the form ab—1, a, bER, bis a nonzero divisor in R. In the commutative

case this quotient ring is called the total quotient ring. It is well

known that a ring R has a quotient ring if it has a right multiple

property, namely, for 'a' regular, bER, there exist c, din R such that

ac = bd, d being regular.

Throughout this paper every ring is assumed to have a two-sided

identity and unless otherwise specified quotient ring means a right

quotient ring. We denote by Z(R) or Z and J(R) or / to represent the

set of all zero-divisors and Jacobson radical in a ring R respectively.

It is shown in 2.4, that if a ring R has a quotient ring Q, then Q is a

local ring iff Z(R) is an ideal and thus the problem is reduced to prov-

ing the existence of quotient rings of rings with Z as an ideal. We next

consider the existence of quotient rings of the rings of the above type

and we prove in 2.6 that rings with a weaker right multiple property

and in 2.7 rings with ZC1J and with some additional hypothesis have

quotient rings. In §3 following the commutative case that any ring

can be imbeddable in a local ring, we investigate the conditions for a

ring imbedded in a local ring, to have a local quotient ring. In §4 we

discuss about the necessity of the conditions used in Theorem 2.7.

Received by the editors July 20, 1967.

1 This paper is a portion of the author's doctoral dissertation written at the Uni-

versity of Wisconsin under the direction of Professor Edmund H. Feller.

1313



1314 M. SATYANARAYANA [December

2. Internal characterization.

2.1 Proposition. If a ring R has a local quotient ring, then Z(R) is an

ideal.

Proof. If (Q, M) is a local quotient ring of R, then every zero-

divisor of R is in M. Hence Z(R) = MC\R, is an ideal.

It can be seen in 2.2 and 2.3 that the condition that Z is an ideal

is sufficient in the commutative case but not in the noncommuta-

tive case.

2.2 Proposition. If R is a commutative ring, then R has a local

(total) quotient ring iff Z is an ideal.

Proof. By virtue of 2.1, it suffices to show that if Z is an ideal,

then R has a local quotient ring. Clearly Z is a prime ideal and hence

5= {a/b: aER, b(£Z} is a local ring. Since R can be identified with

the set of the elements of the form a/1, aER, RQS. Evidently 5 is

the quotient ring of R.

2.3 Examples. Malcev's example of noncommutative integral

domain not imbeddable in a division ring proves that 2.2 is not true

in the noncommutative case. From this we can also construct an

example for the case of nonintegral domains. Consider 5= {a+bx:

a, bER, where R is Malcev's integral domain not imbeddable in a

division ring}, subject to the conditionsx2 = 0, xr=rx for every rER.

5 is a ring under the usual rules of addition, multiplication and equal-

ity defined for polynomials. Evidently Z(S) —xR is an ideal. If 5 has

a quotient ring Q, then every nonzero element of R is invertible in Q

and D= {ab^1: a, bER, b^O} is a division ring. Because of the ring

isomorphism r—>r/l, rER, R is imbedded in a division ring D, a

contradiction.

However, if we assume that the ring has a quotient ring, then the

condition that Z is an ideal is necessary and sufficient for the quotient

ring to be a local ring.

2.4 Proposition. Let Rbe a ring with a quotient ring Q. Then Qis a

local ring iff Z(R) is an ideal. Also ZQ is the unique maximal right

ideal of Q.

Proof. In view of 2.1, it is sufficient to prove that Q is a local ring

if Z(R) is an ideal. Let M he a maximal right ideal of Q. Since Q

is a quotient ring, every element of M is a zero-divisor. So Mr\R

QZ(R). But M=(MC\R)Q [5, Lemma 1.1 ]. Thus MQZQ [write Z
for Z(R) ]. Then ZQ = M or ZQ = Q. If ZQ = Q, then for a unit q of Q,
q=jc~~1, jEZ [5, Corollary 5.2]. Since q is a unit,,; should be regular,
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a contradiction. Thus Q is a local ring with ZQ as the unique maximal

right ideal.

By virtue of the Example 2.3, we must require some more condi-

tions in addition to the condition that Z is an ideal in order to prove

the existence of local quotient rings. So according to 2.4, this problem

is reduced to finding the conditions if Z is an ideal. In this case we can

show that the right multiple property (which is the necessary and

sufficient condition for the existence of a quotient ring) can be

weakened.

2.5 Definition. A set 5 in a ring R is said to have right multiple

property if a, bES and a is regular then there exist r and s, s regular,

such that ar = bs.

2.6 Proposition. Let R be a ring in which the set of all regular ele-

ments has right multiple property. Then R has a local quotient ring if Z

is an ideal.

Proof. Let a he regular and bEZ. Since Z is an ideal, a+b is

regular. Now, by right multiple property of regular elements, we have

ax= (a+b)y where y is regular i.e., a(x— y) =by. Hence R has a quo-

tient ring Q. This implies that Q is a local ring by virtue of 2.4.

Now we seek conditions on when the set of regular elements can

have right multiple property. In order to obtain this property, we

assume the condition that ZC/. This happens to be an important

property enjoyed by many rings with local quotient rings.

2.7 Theorem. Let R be a ring satisfying the following conditions:

(i) Z is an ideal.

(ii) ZCZJ.
(iii) Finitely generated right ideals containing regular elements are

principal.

Then R has a local quotient ring.

Proof. Let a and b he regular in R. By the condition (iii), aR+bR

= dR. Here d is regular since otherwise if dEZ, dRClZ and hence

aEZ, a contradiction. Now we have ap+bq=d; a = dai and b=dbi.

This implies at and 6i are regular since Z is an ideal. Now ap+bq

= d=>apai+bqai=dai = a=$a(l—pai)=bqai. If q is regular, then qai

is regular. Hence a and b have right multiple property. Suppose qEZ.

Then bqaiEZ. Thus a(l—pa/)EZ. This implies 1—paiEZ since a is

regular. Therefore 1—paiEJ, since ZEJ- Thus pai is a unit i.e.,

xai = l. If aiX5*l, then x(aix —1)=0. This implies x£Z i.e., 1EZ,

a contradiction. Thus ai has a two-sided inverse. Since a = dai, d = aar1

and so dREaR. Therefore bR = aR and b(l) =ax, where x is regular.
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Thus the right multiple property is satisfied. Then it follows from 2.6

that R has a local quotient ring.

The assumption of ZCJ in the hypothesis of 2.7 appears to be

reasonable in view of von Neumann regular ring, which satisfies

(iii) but not (i) and (ii) of the hypothesis of 2.7. But the ring of entire

functions over the field of complex numbers satisfies the hypothesis

of 2.7. This is a non-Noetherian ring. By passage to a residue class

ring modulo a primary ideal, we have an example for which Z^O, [10].

An immediate application of 2.7 gives the following corollaries.

2.8 Corollary. Let R be an integral domain in which finitely gen-

erated right ideals are principal. Then R has a quotient skewfield.

2.9 Corollary [Cohn]. ^4wy right Bezout ring [2, Theorem 5.2]

has a quotient skewfield.

2.10 Theorem. Let R be a ring satisfying the following conditions:

(i) Z is an ideal.

(ii) ZQJ.
(iii) Right and left ideals containing regular elements are principal.

Then R has a right and left quotient ring Q and Qn (the ring of nXn

matrices over Q) is a right and left quotient ring of Rn.

Proof. By 2.7, R has both right and left quotient rings. This

implies that R has a two-sided quotient ring Q.

Since Z is an ideal, a is regular iff a+Z is regular in R/Z. By the

conditions (i) and (iii), R/Z is a two-sided principal ideal domain.

Hence by 1.2 and 2.3 of [3], Qn is a two-sided quotient ring of Rn.

3. External characterization. In commutative ring theory, there is

a natural construction of over rings as local rings. If A is a commuta-

tive ring with identity and if P is a prime ideal, then the fractions

a/b, aER, &£P form a local ring, which contains a copy of R. This

type of construction of over rings as local rings appears to be not

feasible for all noncommutative rings. But a start has been made in

the work of Amitsur [l]. However, in the noncommutative case, we

can construct local over rings of local rings. If (R, M) is a local ring,

consider R[x] with the similar construction as in 2.3. Then R[x] is a

local ring with the unique maximal right ideal generated by M and X.

Now in this section we discuss when can a ring imbedded in a local

ring, have a proper local quotient ring, as this is of frequent occur-

rence in the noncommutative case also.

3.1 Proposition. Let Rbe a ring with a local quotient ring (Q, M).

Then (i) Z(R) = MC\R and (ii) R = R/Z(R) is a right Ore domain.
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Proof. Evidently M contains all nonunits in Q. Hence Z(R)

= Mf~\R is an ideal in R. Moreover it can be seen readily that R is

imbedded in Q/M and Q/M is the quotient field of R.

3.2 Theorem. Let R be a ring imbedded in a local ring (Q, M)

satisfying the following conditions.

(i) Z(R)=Mr\R = Z(Q).
(ii) R=R/Z(R) is a right Ore domain.

Then R has a local quotient ring S which is a subring of Q.

Proof. Let a be regular in R and b(?^0)EMr\R. Then an = hd

for any nEZ(R) and regular dER since n^O^b. Thus an — bd = m

EM(~\R. Since Z(R) = MC\R, a is a unit in Q and so aQ = Q. Hence

m = at, tER since otherwise t^Z(Q), m is regular, a contradiction.

This implies a(n — t) =bd. Thus a and b have a right multiple prop-

erty. Now let a he regular in R and b^MC\R. By the condition (ii)

we have an = bd, d regular in 7?. Here d is regular in R since d(£Mf~\R.

Now —an+bd = eEMC\R. Since a(£M, e = at, tER, otherwise t and

so e becomes regular. So a(n+t) = bd. Thus we conclude that R has a

quotient ring S.

S is a subring of Q: Let xES. Then x=rd~~1, d regular in R. Since

Z(R) = Mi^R, d<$:Mr\R i.e., disa unit in Q. Let d'1* be the inverse

of d in Q. Then the mapping rdr1—ndr1* identifies 5 as a subring of Q.

5 is a local ring: If x is a nonunit in S, then x = rd_1, where r is

not regular in R. Hence rEZ(R) = MC\R i.e., xEM. Now if x and y

are nonunits in S, then x and yEM i.e., x+yEM. Thus x+y is a

nonunit in Q. Since SEQ, x+y is a nonunit in 5. Thus we conclude

that 5 is a local ring.

3.3 Proposition. Let Sbe a local quotient ring of R and let (T, M) be

a local ring such that RETES and MC\R = Z(R). Then T = S.

Proof. Let 5 (^0)ES. Then s = ab~1, aER and b regular in R.

Since RET, and MC\R=ZiR), b$M. So 6"1 exists and is in T.
Hence sET.

The above result generalizes the idea of the quotient ring of an

integral domain as the smallest subfield containing the integral

domain.

4. Relation between Z and J. The two important questions that

arise on the assumption of ZCiJ in 2.7 are:

(i) What are those rings R with local quotient rings which satisfy

the property Z(P)C/(£)?
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(ii) Is ZC.J a necessary condition for a ring to have a local quo-

tient ring?

It can be seen in the following that uniform two-sided Noetherian

rings provide the necessary examples to the class of rings specified

in (i).

4.1 Definition. A ring is said to be right (left) uniform if every

nonzero right (left) ideal has nonnull intersection with every non-

zero right (left) ideal. A ring is said to be uniform if it is right and

left uniform.

4.2 Theorem. Let R be a uniform and two-sided Noetherian ring.

Then R has a two-sided quotient ring as a completely primary ring (a

local ring with d.c.c. on right and left ideals).

Proof. Let xr and xl denote the right and left annihilators of x

respectively. By Corollary 6.2 of [4], the hypothesis implies that

{x|xr7*0} and {x|x'^0} are nil ideals. Hence Z = ACJ. Thus R

satisfies regularity condition as defined in [8, p. 90] and hence R

has a right and left Artinian quotient ring [8, Theorem 5.5]. It then

follows that this quotient ring is a local ring by 2.4.

As regards the second question whether ZCIJ is the necessary con-

dition for a ring to have a local quotient ring, we present an example

to show that this need not be the case.

4.3 Example. Let R = D[[u, v]] he a formal power series in two

variables u and v with coefficients in a field D such that uv=vu. Since

D[[u, v]]=D[[u]] [[»]], R is a local ring.

Elements of A are of the form (aoo+OoiM+ ■ ■ -)+(aXo+axxu+ • ■ -)v

+ • • • +(a-na+anxu+ ••• + ••• )vn+ ■ ■ ■ . Suppose that I is the

ideal generated by «V, i> 1, j^ 1, i, j integers. Let R = R/I. Elements

of R are of the form (a0o+ooi«+ ■ • ■ ) + (aXo+axxu)v+ ■ ■ ■

+ (ano+a„iu)vn+ ■ ■ ■ . Consider 5, a polynomial ring with coeffi-

cients in D in the nonzero terms iiH1'.

Since the homomorphic image of a local ring is a local ring, R is a

local ring and SER and R and 5 have the same identity 1. Since

u(uv) =0, then uEZ(S). Suppose uEJ(S). Then 1 — u has an inverse

in 5. But the inverse of 1— u is l+u + u+ • ■ ■ , which is not in 5.

Hence w£/(5). Thus we conclude that Z (5) 91.7(5).

Now we prove_Z(S) =Z(R)r\S. Evidently Z(S)QZ(R)r\S.

Assume fEZ(R) and

/ = (ffoo + aoiu +•••) + («io + »n»)» + • • •

+ (ano + anXu)vn + • • • .
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Now/g = 0, g9^0, where

g = (&oo + boiii +•••) + (*io + bnu)v + • ■ ■

+ ibno + bnlu)vn + ■ • ■ .

Thus we can write

g = Bo + BiV + B2v2 + • • ■ where B„ = (7.o + • • • + b„iil), n ^ 0.

Let <zoo 5^0. Then by comparing the coefficients, we have

aooboo = 0

0O(|2>O1 + Ooi^oo — 0

aoobon + - - - + aonboo = 0

Since the coefficients are in D, we have boo= • • • =bon=0. Then by

induction we have bor = 0 for all integral r'SiO. Thus, Po = 0.

By a similar argument, we can prove that a finite number of B's

are zero. Then, by induction, we conclude that all 73's are 0. Thus

/g = 0=*g = 0, a contradiction. Hence a0o = 0.

Proceeding as above we can show that a finite number an, • • • , aon

will be zero and then, by induction it can be shown aor = 0 for all

integral r^O. Thus f=iaio+auu)v+ • • • . If fEZiR)r\S, then

f=iaio+aiiii)v+ ■ ■ ■ +iano+aniii)vn. Hence, fu2 = 0. This implies

fEZ(S). Thus Z(R)r\S = Z(S). Since Z(S) is an ideal, by 2.2, 5 has
a local quotient ring.

A simple modification obtained by considering a countable number

of indeterminates in the above problem leads to an example of a non-

Noetherian ring with a local quotient ring.
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