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1. Introduction. Let Pn be a nondegenerate generalized polygon

with s + 1 points on each line and 5 + 1 lines through each point (cf.

[l] for definitions), and suppose s>l. Then by Theorem 1 of [l], w

= 3, 4, or 6, and examples for these parameters are known for any

prime power s. If w = 3, P„ is a projective plane, and a desarguian

plane always has a symmetric incidence matrix. If w = 4 and s — 2 the

essentially unique P4 has a symmetric incidence matrix [4]. We ask:

When may P4 have a symmetric incidence matrix A, and in that case

what can we say about A ? The principal results of this paper1 are:

Theorem 1. If n — 6, P„ has no symmetric incidence matrix.

Theorem 2. If A is a symmetric incidence matrix of a Pi, then the

minimal polynomial for A is f(x) = (x — (s + l))(x2 — 2s)x. Let rt be the

multiplicity of 0,- as a root of the characteristic polynomial for A, 8X

= s +1,02 = (2s)1'2, 03 = - (2s)1'2, and 04 = 0. Then rx = 1, r4 = |s(l +s2),

and r2+r3 = -§s(l+s)2. Also, tr(A) = l+s + (2s)1/2(r2-r3), so that if

(2s)112 is irrational, r2 = r3 = Js(l+s)2. (In view of [6], s must be a prime

power, so that (2s)1'2 will be irrational except when s is an odd power of

2.)2

It remains open whether or not P4 always has a symmetric inci-

dence matrix, however, there is always a normal one.2 In the case

s = 2, the particular symmetric incidence matrix considered has

tr(A)—l+s2, and characteristic polynomial F(x) = (x — 3)(x — 2)6

• (x+2)4x6. Perhaps of independent interest is

Theorem 3. If M is a set of points of P4 (embedded in PG(3, s) as in

[6]) no two of which are collinear, then | M| ^ 1 +s2, and there is an M

with \M\ =1+s2.

Theorem 4. For the case w = 3, the incidence matrix A may be as-

sumed to be symmetric at least if P„ is desarguian, and then has minimal

polynomial f(x) — (x — (s + l))(x! — s). Let ri be the multiplicity of 0,- as

a root of the characteristic polynomial of A, 0i = s +1,02 = Vs, 03 = — Vs.
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Then triA) = l+s + (r2 — r3)Vs. Also ri = l, and if Vs is irrational,

r2 = r3 = §s(l+s).

2. The case n = 6. Assume A is a symmetric incidence matrix of

P6. From Lemmas 3.4 and 6.1 of [l] it follows that the characteristic

polynomial P(x) of A2 = ATA is

(1) £(x) = (x-(s + l)2)(x-3s)*'(x-s)**x*», where fti=s(l+s2)

■(l+s+s2)/6, ft2 = is(l+s)2(l-s+s2), ft3 = s(s*+s2 + l)/3. From

Lemma 6.1 of [l] it also follows that

(2) .46=4s;l4 —3s2.42 + (s + l)J, where J is the matrix of order v

with all entries equal to 1, z; = l+s+s2+s3.

LetXi, ■ ■ ■ ,X„ be the characteristic values of A, |\i| ^|X2| ^ • • •.

By the Weyl inequalities [2, p. 116], since s + 1 is clearly a character-

istic value of A, we have |X,-| Si (3s)1'2 for j>1. So s + 1 is a simple

root of the characteristic polynomial of A, and the only root with

absolute value equal to s + 1. Since (l+s)_M is doubly stochastic, it

follows from 5.3.1 [2, p. 123] that A is indecomposable. So by 5.2.7

[2, p. 123], for each pair (i, j), 1 ̂ i, j^v, there is a ft less than the

degree of the minimal polynomial of A such that the (7 j) entry of

Ak is positive.

Lemma 2.1.  The minimal polynomial for A is fix) = (x — (s + 1))

• (x2 —3s)(x2 —s)x.

Proof. Using (1), the fact that/(x) can have no repeated roots,

— (s + 1) is not a root of/(x), and that the degree of the minimal poly-

nomial fix) is at least 6, the lemma follows. We have yet only to

establish that the degree of fix) must be at least 6. By the remarks

preceding the lemma, we need only find a pair ii, j) such that the

ii,j) entry of Ak is zero provided 1:2 ft 5^4. Let Lt be the line indexing

row i ol A. Then in the notation of [l], we need only find a subscript

j such that if Lj, Xj are the line and point indexing row j and column

j, respectively, of A, then X(L,-, Lj) >4 and X(£;, xf) >3. But X(77, L)
^4 for l+s+ ■ • • +s4 different lines L, and X(L,-, x)^3 for

1+s+s2+s3 different points x. This leaves at least (l+s+ • • • +s5)

-(2(1 +s+s2+s3)+s4)>0 suitable j's.

From (2) and Lemma 2.1 it follows that

(3) ^5 = 4s43-3s2^l+J.

From Lemma 3.2 of [l] it follows that

(4) trC44) = (1 +2s)(1 +s)2(l +s2 + s4).

Now let 0 = s + l, /0(x) =/(x)/x—0, so by Lemma 3.4 of [l],

trifoiA)) =/o(0). After computing this we find

(5) tr(46)=4str(^4)-3s2trU) + (l+s+ • • • +s6).
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Using (3), (4) and (5) we find

(6) tr(vl3)=tr(^4) = (l+2s)(l+s)(l+s+ • • • +s5). However, it

is readily verified that tr(^43) g (s + l)2(l+s+ • • • +s5), a contra-

diction. This completes a proof of Theorem 1.

3. The case w = 4. Let A be a symmetric incidence matrix of P4. By

an argument analogous to that used in the case n = 6, we find that

Lemma 3.1. The minimal polynomial for A is f(x) = (x — (s + 1))

• (x2-2s)x. Let 0i = s + 1,0s = (2s)1'2, 03 = - (2s)1'2,04 = 0, and let rt be the

multiplicity of Oi as a root of the characteristic polynomial of A. Then

ri = 1, r4 = §s(l +s2), and r2+r3 = Js(l +s)2.

Put/i(x)=/(x)/x-0i, so that tr(fi(A))=fi(0i)-ri. Using i = l we
find

(7) tr(A*)=2str(A) + (s + l)(s2 + l).

From tr(/sU)+/3(^))=/s(02)-rs+/3(03)-r3, we have

(8) tr(^3)=2s(2s)1'2(r2-r3) + (s + l)3.

Then (7) and (8) imply

(9) tr(4) = (2s)1'2(r2-r3)+l+s.

Then from (9) it is clear that if (2s)1'2 is irrational, r2 = r3, and

Theorem 2 is proved.

If A is the natural incidence matrix of the P4 with s = 2 listed in

[4], then tr(A) =5 = l+s2. Sousing (9) and Lemma 3.1 we may calcu-

late the characteristic polynomial to be (x —3)(x —2)6(x+2)4x5.

Now let A be any incidence matrix of P4 embedded in PG(3, s).

Then ATA —sI = B0 is an incidence matrix of a projective geometry

G—PG(3, s). Furthermore, B0=PB where the following hold (cf.

[3], [6]):
(i) If column j of B is indexed by a point x of G, x a l-dimensional

subspace of 4-tuples over GF(s), then row j of B is indexed by the null

space Ax of x.

(ii) PB is symmetric with l's on the main diagonal, and P repre-

sents a collineation of G induced by a 4X4 nonsingular skewsymmet-

ric matrix C (with zeros on the main diagonal).

If D is a nonsingular matrix over GF(s) such that DCDT= £, where

E is the direct sum of

with itself, then D yields a collineation RT of B such that AR = QB,

where Q is the collineation of B induced by E (cf. Theorem II.3 of

[3]). Similar remarks apply to AT. Using the essential uniqueness
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of PG(3, s) and GFis), it follows that there must be a permutation

matrix P* such that iATR*)TiATR*) = iAR)TiAR). Then ARiR*)T

is a normal incidence matrix of P4.

Let A be any incidence matrix of P4. Let Xi, ■ • ■ , X, be the charac-

teristic values of A, so that Xi = s + 1, 0^|Xj| g(2s)1/2 for 2gjgl

+ §s(l+s)2, and Xy = 0 otherwise. By Shur's inequality |X,-| =(2s)1/2

for 2 g.7'gl+|s(l+s)2 if and only if A is normal.

Suppose that A is normal. Then A is associated with a collineation

of P4 as follows. Let x< and L, be the point and line indexing column

i and row i, respectively, of A, 1 gi gz). Let Lj be any line containing,

say, points Xi0, x,^, • • • , x,,. Then lines L,0, • • ■ , Lif must meet a

point Xj'. For arbitrary indices i,j, XjELt il and only if Xi>ELj if and

only if Xj'ELi>. Thusx—»x</ is a collineation of P4 such that 7^—>Li<.

4 is symmetric if and only if i—n> is the identity permutation on

1, • • • , 0. We know little about tr(^4), except that tr(yl) gf where t

is the maximum possible number of points of P4 no two of which are

collinear.

In connection with this we prove Theorem 3.

Proof. Since P4 has (l+s)(l+s2) lines with 1+s lines through

each point, clearly | M| g 1 +s2. To construct an M with | M\ = 1 +s2,

we use an observation derived from the fact that in PG (3, s) the inter-

section of any two distinct planes is a line, and also that the set of

lines through a given point of P4 form a plane in the PG(3, s) in which

Pi is embedded.
Remark. Let x, y be any two points of P4, and let wo, ■ ■ ■ , w, be

the points collinear with both x and y. Then any point z collinear with

at least two of the w/s is collinear with all of them.

Now to construct M with | M| = 1 +s2. Let P be any point of P4,

L a line through P, Z\, ■ ■ ■ , z3 the other points of L. Let Ln, ■ ■ ■ , Lis

be the lines through z< other than L, 1 gigs, and let x be any point

of Ln different from Zi. Then x determines a layer £x of points, one on

each Lij, 1 g7jgs> as follows:

A = {zI z E L^, 2 g i < s, 1 g j g s, and x and z are collinear},

B = {z\ zE L\j, 1 g ,7 g s, and 2 is collinear with some point in A}.

Define £x by £X = A\JB. Let s be the point of some L^, 2gigs,

1 g j g s, such that x and z are collinear. Then for any j', 2 gj' g s, let

z'ELij> he the point such that z and z' are collinear. Since z' is col-

linear with two of the points (z and Zi) which are collinear with x and

Z2, z' must be collinear with all of the points collinear with both x and

z2. By similar arguments with the other Lij playing the role of Lu we
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see that £x is a set of s2 points, one on each L#, such that any point

of £x on some L<3- is collinear with just those points of the A,',', i'^i,

l^j'^s, which are in £x. It follows that each x' in £x completely

determines £„ and for x, yELij, the layers containing x and y are

disjoint unless x = y. There are s different layers £1, ■ ■ ■ , £s corre-

sponding to the s points xi, • ■ • , x, of Lxx different from zx. If a point

of £a and a point of £& are collinear, they must lie on the same A,-,-.

Thus we obtain a set M of 1+s2 pairwise noncollinear points:

M = Uis,-,,-s.(£/\L<y)U{P}.
Interpreted for the 4-dimensional vector space over GF(s), Theo-

rem 3 says:

Corollary. Given any nonsingular skewsymmetric 4X4 matrix C

(with zeros on the main diagonal) over GF(s), there is a set M of pairwise

independent 4X1 column vectors over GF(s) with \ M\ = 1 +s2 and such

that for any x, yE M, yTCx = 0 if and only if y = x.

4. The case n — 3. The usual way of obtaining an incidence matrix

A of a projective plane from a 3-dimensional vector space yields a

symmetric one: x is in the null space of y ii and only if y is in the null

space of x. Any A is the incidence matrix of a (v, k, X)-configuration

with X = l, so A is normal [5] and the characteristic polynomial of

ATA is well known to be (x —(s + l)2)(x —s)8(1+s). The steps leading to

the minimal polynomial for symmetric A are analogous to those for

w = 6 and w = 4. To complete the proof of Theorem 4 requires a step

similar to (8), and we leave the details to the reader.

5. Addendum. (Added in proof September 20, 1968.) Singleton's
proof of the uniqueness of P4 is in error. Moreover, the examples of

Benson [7] in the odd characteristic case may be shown to be in-

equivalent to those of Singleton (cf. [8]). Also, we have recently ob-

served that if A is symmetric and w = 4, it necessarily follows that

tr(A) = 1 +s2. Thus 2s is a perfect square and r2 and r3 may be calcu-

lated. Consequently for odd characteristic both the examples of Ben-

son and those of Singleton fail to have symmetric incidence ma-

trices.
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