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EVERY OPERATOR IS THE SUM OF TWO
IRREDUCIBLE ONES

HEYDAR RADJAVI

Let 3C be a separable (complex) Hilbert space. An operator on 3C

is called irreducible if it has no reducing subspaces other than the

trivial ones, {o} and 3C. Halmos [2] has recently aroused interest in

these operators by showing that they are dense in the algebra of all

operators. The present note was motivated by a paper of Fillmore

and Topping [l] in which it is proved that every operator is the

sum of four irreducible operators. We shall make use of the obvious

fact that A is irreducible if and only if the only subspaces of 3C in-

variant under both Re A and Im A are ¡0] and 3C.

Lemma. Let S be a finite or countably infinite set of nonscalar oper-

ators on 3C. Then there exists a hermitian operator K on 3C such that

no member of S leaves invariant a nontrivial invariant subspace of K.

The special case of this lemma, where S has one element, is proved

in [3]. The Baire-Category proof given there immediately extends

to the more general case.

Theorem. Every operator on a separable Hilbert space is the sum of

two irreducible operators.

Proof. Let A be any operator on 3C. If A is scalar, then any ir-

reducible operator B will give the desired decomposition A = {A —B)

+B. Hence assume A is not scalar and let M =Re A and N = lm A.

Assume first that both M and N are nonscalar. Apply the lemma

with S= {M, N\ to obtain a hermitian operatoria. Then A = Ai+A2,

where

Al={M-K)-iK    and    A2 = K + i{N + K).

Since every subspace invariant under M—K and K is also invariant

under M, the choice of K implies that Ai is irreducible. So is A2 by a

similar argument.

Since M and N are not both scalar, to complete the proof we must

only treat the case where exactly one of them is scalar. Assume, con-
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sidering i A instead of A if necessary, that M is scalar: M = cl. Apply

the lemma with S= {N} to obtain K. Then

Ai - K + ci + iN/2   and    A2 = - K + iN/2

are both irreducible and A =Ai-\-A2.
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