A RECURSION FORMULA FOR FINITE PARTITION LATTICES

TERRENCE J. BROWN

A partition on a nonempty set S is a collection of disjoint nonempty subsets, called blocks, whose union is S. The recursion formula

(1)
$$B_n = \sum_{j=0}^{n-1} {n-1 \choose j} B_j \qquad (n \ge 1, B_0 = 1)$$

for the number of partitions on a finite set with n elements is well known (cf. Rota [4]). We obtain equation (2) which generalizes (1) and which yields a derivation of the Möbius function for partition lattices different from those in [2], [3] and [5].

Let S be a finite nonempty set. Two partitions σ and π of S satisfy $\sigma \leq \pi$ if every block of σ is contained in a block of π . \leq is a partial ordering of the collection L(S) of partitions of S and $(L(S), \leq)$ is a lattice (cf. Birkhoff [1]). If h is a function from the natural numbers into the integers Z, it is possible to define a function $k: L(S) \rightarrow Z$ by setting $k(\sigma) = \prod_{B \in \sigma} h(|B|)$ for $\sigma \in L(S)$ (|B| = the cardinality of the block B). It is then possible to define another function H from the nonnegative integers into Z by setting H(0) = 1 and $H(n) = \sum_{\sigma \in L_n} k(\sigma)$ for $n \geq 1$, where L_n is the lattice of partitions on a set with n elements.

THEOREM. If h, k and H are as above then

(2)
$$H(n) = \sum_{j=0}^{n-1} {n-1 \choose j} h(j+1)H(n-1-j).$$

PROOF. Assume now that finite nonempty S has n elements. First we show that if C is a nonempty subset of S, then $\sum_{C \in \sigma \in L(S)} k(\sigma) = h(|C|)H(|S-C|)$. C = S implies $\sum_{C \in \sigma \in L(S)} k(\sigma) = k\{S\} = h(|S|)H(0)$. If $C \neq S$ then

$$\sum_{C \in \sigma \in L(S)} k(\sigma) = \sum_{C \in \sigma \in L(S)} h(\mid C \mid) k(\sigma - \{C\})$$

$$= h(\mid C \mid) \sum_{\pi \in L(S-C)} k(\pi) = h(\mid C \mid) H(\mid S - C \mid).$$

Received by the editors September 25, 1968.

Because S is nonempty we may pick $a \in S$. Define $f: L(S) \to P(S - \{a\})$ (the power set of $S - \{a\}$) by $f(\sigma) = \sigma_a - \{a\}$, $\sigma \in L(S)$, where σ_a is the block of σ containing a. For

$$D \in P(S - \{a\})f^{-1}(D) = \{\sigma \in L(S) \mid D \cup \{a\} \in \sigma\}.$$

As f partitions L(S),

$$H(n) = \sum_{\sigma \in L(S)} k(\sigma) = \sum_{D \in P(S - \{a\})} \sum_{\sigma \in f^{-1}(D)} k(\sigma)$$

$$= \sum_{j=0}^{n-1} \sum_{D \in P(S - \{a\}); |D| = j} \sum_{D \cup \{a\} \in \sigma \in L(S)} k(\sigma)$$

$$= \sum_{j=0}^{n-1} \sum_{D \in P(S - \{a\}); |D| = j} h(|D \cup \{a\}|).$$

$$H(|S - D - \{a\}|) = \sum_{j=0}^{n-1} {n-1 \choose j} h(j+1)H(n-1-j).$$

Equation (2) now follows.

Putting h(n) = 1, $n \ge 1$, k maps each partition σ onto 1 and H(n) becomes B_n while equation (2) reduces to (1).

The 0 of L_n is the partition having n blocks while the 1 of L_n is the partition having one block. See Rota [3] for the definition of the Möbius function μ .

COROLLARY. If $\mu_n = \mu(0, 1)$ for the lattice L_n of partitions on a set with n elements, then $\mu_n = (-1)^{n-1}(n-1)!$

PROOF. Set $h(n) = \mu_n$ for $n \ge 1$. $\sigma \in L_n$ implies that

$$k(\sigma) = \prod_{B \in \sigma} h(\mid B \mid) = \prod_{B \in \sigma} \mu_{\mid B \mid} = \mu(0, \sigma)$$

(cf. Rota [3], especially Proposition 5, p. 345, and the lemma on p. 359). Since $H(m) = \sum_{\sigma \in Lm} k(\sigma) = \sum_{g \in Lm} \mu(0, \sigma) = 0$ for $m \ge 2$, H(0) = 1 and $H(1) = \mu_1 = 1$, we see from (2) that

$$0 = H(n) = \left(\frac{n-1}{n-2}\right)h(n-1)H(1) + \binom{n-1}{n-1}h(n)H(0),$$

i.e., that $\mu_n = -(n-1)\mu_{n-1}$ for $n \ge 2$. From $\mu_1 = 1$ the corollary follows.

REFERENCES

- 1. Garrett Birkhoff, *Lattice theory*, rev. ed., Amer. Math. Soc., Providence, R. I., 1966.
- 2. Roberto Frucht and Gian-Carlo Rota, La función de Möbius para el reticulo di particiones de un conjuncto finito, Scientia; revista científica y técnica (Chile) N. 122 (1963), 111-115.
- 3. Gian-Carlo Rota, On the foundations of combinatorial theory. I, Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie 2 (1964), 340-368.
- 4. ——, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498-504.
- 5. M. P. Schutzenberger, Contribution aux applications statistiques de la théorie de l'information, Publ. Inst. Statist. Univ. Paris 3 (1954), 5-117.

University of Missouri at Kansas City