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1. By ring we mean commutative ring with identity. Module

means unitary module. In this paper we use some results on determi-

nantal rank to prove the following proposition: A finitely generated

P-module M is projective if and only if M is flat and there is an exact

sequence 0—*M—*N—*L of i?-modules such that N and L are projec-

tive (Theorem 2.9). A corollary is that a finitely generated R module

M is proj ective if and only if M is flat, reflexive and M * = HomÄ (M, R) is

of finite presentation. In §3, we give an example of a cyclic ideal M

in a ring R such that M is flat and reflexive, M* is cyclic, but M is

not projective.

We use f.g. in place of finitely generated and morphism instead of

P-homomorphism. The set of prime ideals of a ring R is denoted

Spec(i?). N denotes the set of nonnegative integers. If SQN is un-

bounded, we write sup(S) = ».

2. Let u: M-^N be a morphism of P-modules. We define rk(z¿),

the rank of u, by rk(«) =sup{nQN; \nu 9*0} where A" denotes «th

exterior power. We also define dim(Af) =rk(ljvf). When M and N are

f.g. free P-modules, rk(u) is also the determinantal rank of a matrix

corresponding to u and dim (If) is the cardinality of a basis of M.

When M and N are free we denote by D(u, p) the ideal generated by

the ^-minors of a matrix corresponding to u. The ideals {D(u, p) ; p QN}

are the Fitting invariants of Coker(w) [3]. If 5 is a multiplicative

system in R, then rk(ws) is the rank of us as an Ps-morphism.

The following result from [2, p. 98, Exercise 3] will be used several

times.

2.1. Lemma. Let M and N be f.g. free R-modules of dimensions m

and n respectively. Then a morphism u: Af—»A7 is a monomorphism if

and only if m^n and Ann(D(u, m)) =0. (In that case rk(w) =m.)

2.2. Lemma. Let u: M—>N be a morphism of R-modules. Let S and

T be multiplicative systems in R such that S^T (i.e. R—*Rt factors

through R—^Rs). Then

(i) rk(ttr) ^rk (tts),
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(ii) if M is f.g., then 3fES-3-rk(uf) =rk(ws),
(iii) if L-^Mis an R-morphism, then r\t(uv) ^min {rk(w), rk(i>)},

(iv) rk(w) =sup {rk(«j,) ; ¿>£Spec(P)}.

The proof of 2.2 is straightforward.

2.3. Proposition. Let v: M->N and u: A7—>L be morphisms of f.g.
free R-modules such that lmage(v) 3Kernel(u).  Then either dim(N)

^rk(u)+dim(M) or D(v, dim(M))Qs/0.

Proof. Let m = dim(A7), w = dim(Ar). Suppose that D(v, m)%y/Q.

Since we wish to show that n^rk(u)+m, we may assume m^n. As

D(v, wí)Í\/0, 3/>£Spec(P)- 3-D(v, m)%p. Then it is easy to see that

D(vp, m) = (D(v, m))p = Rp. Thus by [2, p. 98, Exercise 5] (vp)*: (Np)*

—*(MP)* is an epimorphism. Then by [l, p. 108, Proposition 6] vp is

a monomorphism onto a direct summand of Np. Let vp(Mp)@H = Np

and let c: H^>NP be the canonical inclusion. Evidently 77 is a free

Pp-module of dimension n—m. Since Image(op)3Kernel(up), upc is a

monomorphism. Hence rk(upc)=n—m. By 2.2(i) and 2.2(iii),

rk(w) 3;«—m.

2.4. Corollary. If v in 2.3 is a monomorphism, then dim(N)

£rk(u)+dim(M).

Proof. Let D = D(v, dim(M)). By 2.1, Ann(7>) =0. Thus, because

D is f.g., DQy/O. Hence, by 2.3, dim(iV) ̂ rk(w)+dim(il7).

2.5. Corollary. Let u: N—>L be a morphism of f.g. flat R-modules.

Let M be a f.g. flat submodule of N such that M3 Kernel (u). Then
dim(N) úrk(u)+dim(M).

Proof. Let ¿>£Spec(P). By 2.4 and 2.2(i),

dim(Ag g rk(uv) + dim(Mp) = rk(w) + dim(M).

Hence, by 2.2(iv), dim(N)^rk(u)+dim(M).

2.6. Proposition. Let v: E^>F, u: F—»G be morphisms of f.g. free

R-modules, w = dim(P). If O^p, q^n are integers such that p+q>n,

and if uv = 0, then D(v, q)D(u, p) = 0.

Proof. We may assume that E = F=G. Let ei, • • • , en be a basis

of E. Let U=(uif) and V=(va) be the matrices of u and v, respec-

tively, relative to ei, • • • , en. We use the notation of [2]. We must

show that if 77, K, S,TQ[l,n]-3- \H\= \K~\=pand \S\= \T\=q,
then Vs,tUh,k = 0. Let 77, K, S, Pç[l, n] with \h\= \k\=P and
\S | = \T | =q. We will construct an endomorphism w of E- 3 -det(w)
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^íVs.tUh.k for some non-zero-divisor t of R. Then we will show

det(w)=0. For LÇ[l, »], ttl: E—*E is the projection defined by

7Ti,(e¡)=e¿ if iQL and irL(e,)=0 if iQL'. Select one-to-one corre-

spondences <r: K'^>H' and t: T'—*S'. Let a = o'_1 and ß=r~1. Define

/,: £—>E by /„(e¿) =e„(>) if i£Z', and/„(e,)=0 if î'£.K\ Define/r,/„
and/p similarly. It is easy to check that

0)   TTs+ITs- = lE=irK+TTK',

(Ü)   frfß — TS'l /a/í = Tí',

(Ui)   7Tr/|3 = 0 =faTTH = TTnfa = TTsfr,

(iv) fßVTr + lE and wnufa + lE are monomorphisms.

Now let w = (TrHu+fc)(virT+fr). Using (i)-(iii), we get that imu+f,

= (iïHufa + lE)(TrHUirK+f<,). By 2.1, ti = det(TTnufa+lE) is a non-zero-

divisor of R. By Laplace's Expansion, det(xHUTTK+f,) = + Uh,k.

Hence, det(7rffw +fr) — +hUii,K. Similarly, det(vTTT+fT) = +tiVs,T

where ¿2 = det(/ßOTrr + l.E) is a non-zero-divisor of R. Hence, det(w)

= tVs.TUn,K where I is a non-zero-divisor of R. Now let W be the

matrix of w relative to ei, • • • , en. We have

det(PF) = pt.t>2lPl,l>Wl,tWl>.t'

by Laplace's Expansion. Let LQ [l,n]-3- \L \ = \T\ =q. Then

LC\H9*0 since \H\=p and p+q>n. Choose jQLC\H. Then

T{j\wttt = 0. Hence, the jth row of the qXq submatrix of W deter-

mined by rows in L and columns in T is zero. Therefore Wl.t = 0,

anddet(W0=0. Finally, Uh.kVs,t = 0.

2.7. Corollary. If O^M-^F-^G is an exact sequence of f.g. free

R-modules, then dim(M)+rk(u) =dim(P).

Proof. By 2.4, dim(P) ^dim(M)+rk(u). By 2.6, D(u, n-m + 1)

■D(v,m)=0 where w = dim(P) and m=dim(M). By 2.1, Ann(D(v,m))

= 0. SoD(u, n — m + 1) =0. Therefore, An~m+1u = 0, i.e., rk(u) ^n — m.

2.8. Proposition. If M-^F-^G is an exact sequence of f.g. free

R-modules such that rk(M)4-dim(Af) =dim(F) and if Image(z/) is flat,
then v is a monomorphism.

Proof. Let pQSpec(R). Since v(M) is flat, vp(Mp) is a free Rp-

module. By 2.7, dim(»p(Mp))+rk(wp) =dim(PJ,). By 2.2(i), rk(up)

^rk(w). Thus,

dim(Afp) è dim(ïp(ilfp)) = dim(Pp) — rk(Mj,) à dim(Pp) — rk(«)

= dim(F) - rk(«) = dim(lf) = dim(Mp).

So Mp—>vp(Mp) is an epimorphism of free Pp-modules of the same
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dimension. Hence, Mp—>vp(Mp) is an isomorphism. Therefore vp is

a monomorphism,  V¿>£Spec(P). Therefore » is a monomorphism.

2.9. Theorem. 4 finitely generated R-module M is projective if and

only if M is fiat and there is an exact sequence 0—»M-^F-^G with F and

G projective R-modules.

Proof. If M is projective, then certainly M is flat and such a

sequence exists. Conversely, it is not hard to see that we may assume

that F and G are free and f.g. Now let ¿>£Spec(P). By 2.2.(ii),

5f'ER\p-3-rk(ur)=rk(up). Let m = dim(Mp). By 2.7, m+rk(up)
= dim(Pp). Let E be a free P-module of dimension m. There is an

P-morphism E—>M ■ 3 ■ wv is an epimorphism (in fact an isomorphism).

By [2, p. 136, Proposition 2], 3f"ER\p-3-Wf> is an epimorphism.

Letf=f'f". Then vk(u¡) =rk(up), w¡ is an epimorphism, and/£P\p.

The sequence Ef—tF/^G/ is an exact sequence of f.g. free P/-modules;

Image(%) = M¡ is a flat P/-module;

rk(«/) + dim(£/) = xk(up) + dim(Mp) = dim(Pp) = dim(F/).

Hence, by 2.8, w¡ is a monomorphism. Therefore, Af/ = Image(%) is

a free P/-module. We have shown that V¿>£Spec(P)3f£P\£-B-M¡

is a free P/-module. Thus M is projective by [l, p. 138, Theorem l].

2.10. Corollary. 4 finitely generated R-module M is projective if

and only if M is flat, reflexive and M* is of finite presentation.

Proof. The necessity is well known. For the converse, let /: J17

—>M** be the canonical morphism.

Since M* is of finite presentation, there is an exact sequence

E-^F^*M*-^0 with E and F f.g. free 7^-modules. Hence, 0-*Jl7^F*

-^>E* is exact and F* and E* are free. By 2.9, M is projective.

3. Let 5 be a ring which admits a commutative 5-algebra 4^0

satisfying

(1) there is a non-zero-divisor / of 5 such that tA =0,

(2) Va£43o£4-3-oa = a,

(3) 4 has no multiplicative identity.

Let R = SXA with the usual coordinate addition and multiplication

defined by (s, a)(r, b) = (sr, ra+sb+ab). Fix a non-zero-divisor t oí S

such that/4 =0. Letr = (¿, 0) and M = Rr. Denote the exact sequence

0—>Annß(M)—>P—>Af—>0 by (E). M is flat: it is sufficient to show

x£AnnÄ(M)=>3y£AnnÄ(M)-3-yx = x [l, p. 65, Exercise 23]. Let

xEAnnR(M). Write x = (5, a). Since xr = 0 and t is a non-zero-divisor,

s = 0. By (2), 3bEA-3-ba = a. Let y = (0, b). Since ¿4=0, yr = 0 so
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yQAnnR(M). Also yx = (0, b)(0, a) = (0, ba) = (0, a)=x. Thus M is

flat. M is not projective: if M is projective, then (E) splits. Hence

AnnR(M) is generated by an idempotent e of R. Since Ä9*0, e9*0.

Write e=(0, u). Let cQA. Then (0, c)r = 0 so (0, c)QAnnR(M).

Therefore, (0, c) =e(0, c) = (0, u)(0, c) = (0, uc). That is uc = c, VcQA

contradicting (3). Thus M is a cyclic flat nonprojective ideal of R.

Now consider the following choice for 5 and A. S is the ring of

integers. / is an infinite set and A is the set of functions/: I—>S/(2)

such that/(¿) = 0 for all but finitely many iQI. With pointwise opera-

tions, A is an 5-algebra satisfying (l)-(3) with t = 2 in (1). Thus

M = R(2, 0) is flat but not projective. It is easy to see that in this

case we have M = AnnR(AnnR(M)). It follows that M* is cyclic and

M is reflexive. Hence, M is a cyclic flat reflexive nonprojective ideal

with M* cyclic. This shows that the hypothesis "M* is of finite

presentation" in 2.10 cannot be replaced by "M* is f.g."
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