ON SUBGROUPS OF FINITE SOLVABLE GROUPS

AVINOAM MANN¹

In this note, the word "group" means "a finite solvable group." Let G be a group, and D a system normalizer of G. In [5] we introduced the subgroup Q(D), generated by all subgroups of G in which D is subnormal. In this note we use one of the alternative characterizations of Q(D), as given in [5], to define an analogue, Q(H), for arbitrary subgroups H of G. We derive a covering-avoidance characterization of Q(H), and deduce that it is homomorphism invariant. These results, in turn, can be used to shorten many of the proofs in [5].

We first recall some definitions. A Sylow system \mathfrak{S} of G is said to reduce into H, if $\mathfrak{S} \cap H$ (i.e. the set of intersections of members of \mathfrak{S} with H) is a Sylow system of H. An H-composition-series of G is a series

$$\{1\} = G_n \triangle G_{n-1} \triangle \cdots \triangle G_1 \triangle G_0 = G$$

in which each G_i is a maximal H-invariant normal subgroup of G_{i-1} . The groups G_i/G_{i+1} are referred to as H-composition-factors of G. If H induces (by conjugation) only the trivial automorphism on G_i/G_{i+1} , then the latter is H-central, otherwise it is H-eccentric. The product of the indices $|G_i:G_{i+1}|$, for those factors in (1) which are H-central and are avoided by H, is denoted by $z_0(H)$. Here a subgroup K covers G_i/G_{i+1} if $G_i \subseteq G_{i+1}K$, K avoids G_i/G_{i+1} if $G_i \cap K \subseteq G_{i+1}$. $z_0(H)$ is an invariant of H (and G), i.e. it does not depend on the series (1) (see [2]).

Let \mathfrak{M} be a set of Sylow systems of G. We refer to \mathfrak{M} as a block, if \mathfrak{M} is disjoint from all of its conjugates (so that if we consider G as a permutation group on its Sylow systems, the conjugates of \mathfrak{M} form an imprimitivity system).

Now let H be any subgroup of G. We denote by \mathfrak{M}_0 the smallest block of G which contains all the Sylow systems reducing into H.

DEFINITION. The stabilizer of \mathfrak{M}_0 (i.e. the set of all $g \in G$ such that $\mathfrak{M}_0 = \mathfrak{M}_0$) is denoted by Q(H).

THEOREM 1. Q(H) covers all H-central H-composition-factors of G. Moreover, if $K \supseteq H$ and K covers all H-central H-composition-factors, then $K \supseteq Q(H)$.

Received by the editors October 21, 1968.

¹ This research was partially supported by National Science Foundation grant, GP-7952X.

PROOF. Let G_i/G_{i+1} be an H-central factor in (1), and let \mathfrak{S} be a Sylow system of G reducing into H. Then \mathfrak{S} reduces into G_iH [3, Lemma 2.7]. Let D be $N_{G_iH}(\mathfrak{S} \cap G_iH)$. Then D transforms S into systems reducing into H (because they all have the same intersection with G_iH), and thus D stabilizes \mathfrak{M}_0 , and $D \subseteq Q(H)$. Since D covers the central factor G_i/G_{i+1} of G_iH , Q(H) covers G_i/G_{i+1} .

Now let $K \supseteq H$, and assume that K covers all H-central factors. A K-central factor is certainly H-central, so K covers all of its central factors, and thus K is abnormal (see $[2, \S 2]$; an abnormal subgroup is one for which $g \in \langle K, K^g \rangle$ for all $g \in G$). The intersections of K with the terms of (1) form an H-composition series of K, and as K covers all H-central factors in (1), these give rise to H-central factors of K of the same order. Thus $z_0(H)$, computed in K, is the same as $z_0(H)$, computed in G.

Let D be a system normalizer of G, and D_1 one of K. By [2, p. 541] there are $|H|/|D| \cdot z_0(H)$ Sylow systems of G reducing into H, $|H|/|D_1| \cdot z_0(H)$ systems of K reducing into H, and each system of K is the intersection with K of $|D_1|/|D|$ systems of G. It follows that the number of systems of G reducing into both K and H is

$$\frac{\mid D_1 \mid}{\mid D \mid} \cdot \frac{\mid H \mid}{\mid D_1 \mid} \cdot z_0(H) = \frac{\mid H \mid}{\mid D \mid} \cdot z_0(H)$$

i.e. all systems of G reducing into H reduce also into K. Let \mathfrak{M} be the set of all Sylow systems reducible into K. Then, K being abnormal, \mathfrak{M} is a block with stabilizer K [5, Lemma 2]. Thus $\mathfrak{M} \supseteq \mathfrak{M}_0$, and the stabilizer of \mathfrak{M}_0 is contained in the stabilizer of \mathfrak{M} .

REMARK 1. It is seen from the proof that it is enough to assume that K covers the H-central factors in a given series (1).

REMARK 2. For each central factor G_i/G_{i+1} in (1), let D_i be a system normalizer of G_iH , as in the first paragraph of the proof. Then we have seen that $D_i \subseteq Q(H)$, and that D_i covers G_i/G_{i+1} . Thus Theorem 1 implies that $Q(H) = \langle H, D_i \rangle$ (*i* ranges over all indices such that G_i/G_{i+1} is *H*-central).

REMARK 3. Take K = Q(H) in the above proof. Then $\mathfrak{M} \supseteq_0 \mathfrak{M}$ If $\mathfrak{S} \in \mathfrak{M}_0$ and $g \in Q(H)$, then $\mathfrak{S}^g \in \mathfrak{M}_0$. Take \mathfrak{S} to reduce into H, then we have seen that \mathfrak{S} reduces into Q(H), and all systems reducing into Q(H) are conjugate under Q(H) by [1, Lemma, p. 360]; thus $\mathfrak{M} \subseteq \mathfrak{M}_0$ and \mathfrak{M}_0 is the set of all Sylow systems reducing into Q(H).

THEOREM 2. Let $G \rightarrow G^*$ be an epimorphism, and let stars denote epimorphic images. Then $Q(H^*) = Q(H)^*$.

PROOF. Let N be the kernel of the epimorphism, and let $R/N = Q(H)^*$, Q = Q(H). We may assume that N is one of the terms in

(1). Then Q^* covers all H^* -central factors in the H^* -composition-series $\{G_i^*\}$ of G^* . Thus $Q^* \supseteq R$. In turn, R covers all H-central factors in (1), so $R \supseteq Q$, and $R^* = Q^*$.

Suppose $H \triangle \triangle L$, and let \mathfrak{N} be the set of Sylow systems reducible into L. Then all systems in \mathfrak{N} reduce into H, so $\mathfrak{N} \subseteq \mathfrak{M}_0$. As L stabilizes \mathfrak{N} , $L \subseteq Q(H)$. In general, Q(H) is not generated by all such L, as we can see by taking H to be any self-normalizing subgroup that is not abnormal.

Now take D to be any subgroup normalizing the Sylow system \mathfrak{S} of G. In the notations of Remark $2, D \subseteq D_i$ for each of the i's considered there. Thus $Q(D) = \langle D_i \rangle$, and $D \triangle \triangle D_i$, as each D_i is nilpotent. So Q(D) is generated by all subgroups in which D is subnormal. If $D \subseteq E$ and E is nilpotent, then $D \triangle \triangle E$, hence $E \subseteq Q(D)$. On the other hand, the subgroups D_i are nilpotent. We thus see that Q(D) is, indeed, the subgroup introduced in [5], and at the same time we have alternative proofs for the properties of Q(D) discussed there (the present treatment is slightly more general, as we allow D to be an arbitrary subgroup of a system normalizer).

As a further application, consider the problem: when is \mathfrak{M}_0 the set of all systems reducing into H? Suppose this is the case. By Remark 3, all systems of Q(H) reduce into H, so that $H \triangle \triangle Q(H)$ [2] or [4]. We then have in Q(H), and therefore also in G, $z_0(H) = |Q(H): H|$. Thus Q(H) is the strong subnormalizer of H, in the sense of [5]. Conversely, assume that $H \triangle \triangle L$ and that $|L:H| = z_0(H)$. L covers or avoids all factors in (1), and the ones that L covers but H avoids must be H-central (they are H-isomorphic to factors between L and H). By orders, L covers all H-central factors, so $L \supseteq Q(H)$, L = Q(H), and L is necessarily the strong subnormalizer of H. Since $H \triangle \triangle L$, all systems of L reduce into L, so L0 is indeed the desired set of Sylow systems. We have thus reproved Theorems 3 and 4 of [5], while Theorem 5 there follows from our present Theorem 2.

References

- 1. J. L. Alperin, System normalizers and Carter subgroups, J. Algebra 1 (1964), 355-366.
- 2. R. W. Carter, Nilpotent self-normalizing subgroups and system normalizers, Proc. London Math. Soc. 12 (1962), 535-563.
- 3. ——, On a class of finite soluble groups, Proc. London Math. Soc. 9 (1959), 623-640.
- 4. O. H. Kegel, Sylow Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78 (1962), 205-221.
- 5. A. Mann, System normalizers and subnormalizers, Proc. London Math. Soc. (to appear).

University of Illinois, Urbana and Institute for Advanced Study, Princeton