A THEOREM ON THE SEMIGROUP OF BINARY RELATIONS

IAW-CHING YANG1

The purpose of this note is to generalize a theorem of Zaretskii [2]. Notations and definitions used here are based on those of [1] and [2].

THEOREM. Let X be an arbitrary set. The necessary and sufficient condition that the binary relation ρ is a regular element of the semigroup S_X is that $L(\rho)$ is a completely distributive complete lattice.

PROOF. Necessity. Let $\rho = \rho \delta \rho$, where $\delta \in S_X$. Let $\sigma = \delta \rho$, then $\sigma^2 = \sigma$ and $\rho = \rho \sigma$. It is known in [1] that $L(\sigma)$ and $L(\rho)$ are complete lattices in which joins are unions and, moreover, $L(\sigma)$ is completely distributive.

If $A \subseteq X$, then it is easy to show that $\psi(A) = \psi(\phi(A))$ and $\phi(A) = \chi(\psi(A))$ where $\phi(A) \in L(\sigma)$, $\psi(A) \in L(\rho)$ and $\chi(A) \in L(\delta)$. Define the mapping θ of $L(\sigma)$ onto $L(\rho)$ as follows: if $\phi(A) \in L(\sigma)$, then $\theta(\phi(A)) = \psi(A)$. Clearly, θ preserves set-inclusion order and is one-to-one. Hence, $L(\sigma)$ is completely isomorphic with $L(\rho)$. This proves that $L(\rho)$ is completely distributive.

Sufficiency. Let $L(\rho)$ be a completely distributive complete lattice. Define the binary relation δ as follows: $(x, y) \in \delta$, iff $\rho(x, y)\rho \subset \rho$. Obviously, $\rho \delta \rho \subset \rho$.

For each $z \in X$, define $K_z = \{\psi(\{v\}) : z \in \psi(\{v\})\}$. For any $y \in X$, let $K = \{K_z : z \in \psi(\{y\})\}$ and S(K) denote the set of mappings s of $\psi(\{y\})$ into $L(\rho)$ such that for every $z \in \psi(\{y\})$, $s(z) \in K_z$. Then $V\{\Lambda K_z : z \in \psi(\{y\})\} = \Lambda\{Vs(\psi(\{y\})) : s \in S(K)\}$. Since lattice joins are unions, we have $Vs(\psi(\{y\})) \supseteq \psi(\{y\})$, for each $s \in S(K)$, and hence $\Lambda\{Vs(\psi(\{y\})) : s \in S(K)\} \supseteq \psi(\{y\})$. Therefore,

$$\bigcup \{ \bigwedge K_z : z \in \psi(\{y\}) \} = \bigvee \{ \bigwedge K_z : z \in \psi(\{y\}) \} \supseteq \psi(\{y\}).$$

Let $(x, y) \in \rho$. Then $x \in \psi(\{y\})$ and so there exists a $z \in \psi(\{y\})$ such that $x \in \Lambda K_z$. Therefore $x \in \psi(\{w\})$ for some w satisfying

$$\psi(\lbrace w \rbrace) \subseteq \bigwedge K_z \subseteq \bigcap K_z = \bigcap \{\psi(\lbrace v \rbrace) : z \in \psi(\lbrace v \rbrace)\}.$$

Received by the editors October 30, 1968.

¹ The author expresses his thanks to the referee for his comments.

But woz holds iff

$$\psi(\{w\}) \subseteq \bigcap \{\psi(\{v\}) \colon z \in \psi(\{v\})\}.$$

Thus, we have $x\rho w$, $w\delta z$ and $z\rho y$; hence $(x, y) \in \rho \delta \rho$. It follows that $\rho \subset \rho \delta \rho$. Therefore $\rho = \rho \delta \rho$. This completes the proof.

REFERENCES

- 1. G. N. Raney, A subdirect union representation for completely distributive complete lattices, Proc. Amer. Math. Soc. 4 (1953), 518-522.
- 2. K. A. Zaretskii, Regular elements of the semigroup of binary relations, Uspehi Mat. Nauk 17 (1962), 177-179. (Russian)

Institute of Mathematics, Academia Sinica, Taiwan