ON THE UNIFORMIZATION OF SOUSLIN 5 SETS

R. C. WILLMOTT¹

1. Introduction. A set E in a cross product space $X \times Y$ is said to be uniformized by a set U if $U \subset E$; the projections $\Pi_X E$ and $\Pi_X U$ of E and U onto X coincide; and for each $x \in \Pi_X E$ the set $(\{x\} \times Y) \cap U$ of points of U above x is a singleton. (For a detailed discussion of the problem of uniformization see C. A. Rogers and R. C. Willmott [6].) M. Kondô [2] showed that if E is the complement of a Souslin F set in the Euclidean plane (or, more generally, the cross product of two complete separable metric spaces), then a uniformizing set U may be chosen which is again the complement of a Souslin F set. He showed further [2, Theorem F, F, F and F is a Souslin F set then F may be chosen to be a set from the projective class F sets and F is the family of projections of complements of Souslin F sets and F is the family of complements of sets of F.

In a recent paper, C. A. Rogers and R. C. Willmott [6], studying the first result of Kondô, removed almost all conditions on the space X. They also considered the case where Y is a descriptive Borel set (see C.A. Rogers [4]), obtaining a partial uniformization result (Theorem 19) in terms of a complement of a Souslin $\mathfrak F$ set. M. Sion [8], studying the case of an analytic set (which is a Souslin $\mathfrak F$ set in a complete separable metric space; see, e.g. Bressler and Sion [1, Theorem 5.7]) also removed almost all conditions on X and some on Y, and concentrated his attention on the properties of the uniformizing set as a function, e.g. measurable for a large class of measures, not concerning himself with its set-theoretic properties.

In this paper, using methods of Rogers and Willmott [6], the second result of Kondô is generalized in Theorem 2 by removing all conditions on X, and by finding for a Souslin \mathfrak{F} set E a uniformizing set U which is the difference between E and a \mathfrak{D}_{σ} -set, where \mathfrak{D} is the family of differences of Souslin \mathfrak{F} sets. U is a member of the family of $\mathfrak{D}_{\sigma\delta}$ -sets, a subset of B_2 in a complete separable metric space. It is known that there exist Souslin \mathfrak{F} sets in the plane which cannot be uniformized either by a Souslin \mathfrak{F} set or by the complement of a Souslin \mathfrak{F} set (see, e.g. [7, p. 57]). The case where Y is a descriptive Borel set is also considered and a result, Theorem 3, is obtained for a Souslin \mathfrak{F} set using the difference between the Souslin \mathfrak{F} set and a

Received by the editors September 6, 1968.

¹ This paper was written while the author was a fellow of the 1968 Summer Research Institute of the Canadian Mathematical Congress.

 \mathfrak{D}_{σ} -set, which is analogous to that obtained in [6, Theorem 19], for the complement of a Souslin \mathfrak{F} set using the complement of a Souslin \mathfrak{F} set.

I am grateful to Professor C. A. Rogers for an observation which led to a reduction of the type of the uniformizing set in these theorems.

2. **Definitions and notation.** All definitions and notation are those of [6]. The following should suffice for those parts of this paper which are independent or are statements of theorems.

I denotes the family of sequences of positive integers. For $i \in I$, $i \mid n$ is the *n*-tuple i_1, i_2, \dots, i_n ; and

$$I_{i|n} = \{j \in I: j \mid n = i \mid n\},\,$$

called a Baire interval of order n. The Baire intervals form a base for a topology on I; with this topology I is a homeomorph of the irrational numbers.

Souslin \mathfrak{F} in X is the family of sets A having a representation of the form

$$A = \bigcup_{i \in I} \bigcap_{n=1}^{\infty} A(i \mid n),$$

where each set A(i|n) is closed in X. This Souslin representation is said to be disjoint if for each $i, j \in I$,

$$\bigcap_{n=1}^{\infty} A(i \mid n) \cap \bigcap_{n=1}^{\infty} A(j \mid n) = \emptyset \quad \text{if } i \neq j.$$

In a complete separable metric space, Souslin & coincides with the classical family of analytic sets (see, e.g. Bressler and Sion [1, Theorem 5.7]). Souslin sets with disjoint representations are studied in [6, §§4, 5 and 8].

Borel Souslin \mathfrak{F} in X is the smallest family containing Souslin \mathfrak{F} in X and closed under complementation and countable unions.

A function K from I to the compact subsets of a topological space X is said to be semicontinuous if for each $i_0 \in I$ and open set G of X with $K(i_0) \subset G$, there exists an open set 0 of I with $I_0 \in 0$ and $K[0] \subset G$. A set in a Hausdorff space X is called descriptive Borel if it has a representation of the form $K[I] = \bigcup_{i \in I} K(i)$ where K is a semicontinuous function from I to the compact subsets of X such that $K(i) \cap K(j) = \emptyset$ if $i \neq j$. For properties of descriptive Borel sets see C. A. Rogers [4].

3. Theorems. We establish our main result in $X \times I$ and subse-

quently use mapping techniques of Rogers and Willmott [6] to extend it to other spaces.

Let $\mathfrak D$ be the family of differences of Souslin $\mathfrak F$ sets. Then the uniformizing set in the following theorem

$$U = A \sim \bigcup_{n=1}^{\infty} W_n = \bigcap_{n=1}^{\infty} (A \sim W_n)$$

is an \mathcal{E}_{δ} -set, where \mathcal{E} is the family of sets E of the form

$$E = A \sim (B \sim C) = (A \sim B) \cup (A \cap B \cap C),$$

where A, B and C are Souslin \mathcal{F} sets. Clearly

$$\mathcal{E}_{\delta} \subset \mathfrak{D}_{\sigma\delta} \subset \text{Borel Souslin } \mathfrak{F}.$$

In a complete separable metric space, B_2 contains Souslin \mathfrak{F} , is closed under complementation and countable unions (see, e.g. [7, p. 21]) and hence contains Borel Souslin \mathfrak{F} .

THEOREM 1. Let X be a topological space. Then a Souslin \mathfrak{F} set A in $X \times I$ can be uniformized by the difference between A and a \mathfrak{D}_{σ} -set.

PROOF. Let A be a Souslin \mathfrak{F} set in $X \times I$. Then, by the first part of the proof of Theorem 17 in [6], A has a representation

$$A = \bigcup_{i \in I} \bigcap_{n=1}^{\infty} F(i \mid n),$$

where for each $i \in I$ and $n \ge 1$,

$$F(i \mid n) = B(i \mid n) \times C(i \mid n),$$

where B(i|n) is closed in X and C(i|n) is empty or is a Baire interval in I of order $\geq n$. We may suppose that for each $i \in I$ and $n \geq 1$, $C(i|n+1) \subset C(i|n)$, for otherwise, setting

$$F'(i \mid n) = B(i \mid n) \times \bigcap_{m=1}^{n} C(i \mid m),$$

we have the F'(i|n) of the required form since two Baire intervals are either disjoint or one is contained in the other, and clearly

$$\bigcup_{i\in I}\bigcap_{n=1}^{\infty}F'(i\mid n)=\bigcup_{i\in I}\bigcap_{n=1}^{\infty}F(i\mid n)=A.$$

Now for $i \in I$, $m \ge 1$, set

$$A(i \mid m) = \bigcup_{j \in I_{i \mid m}} \bigcap_{n=1}^{\infty} F(j \mid n) \subset A \cap F(i \mid m).$$

Let

$$V_{1} = \bigcup_{n_{1}=2}^{\infty} \left[A(n_{1}) \cap \left(\bigcup_{p=1}^{n_{1}-1} \Pi_{X} A(p) \times I \right) \sim \bigcup_{p=1}^{n_{1}-1} A(p) \right],$$

$$V_{2} = \bigcup_{n_{1}=1}^{\infty} \bigcup_{n_{2}=2}^{\infty} \left[A(n_{1}, n_{2}) \cap \left(\bigcup_{p=1}^{n_{2}-1} \Pi_{X} A(n_{1}, p) \times I \right) - \left(\bigcup_{p=1}^{n_{2}-1} A(n_{1}, p) \cup \bigcup_{p=1}^{n_{1}-1} A(p) \right) \right],$$

and, in general,

$$V_{s} = \bigcup_{n_{1}=1}^{\infty} \cdots \bigcup_{n_{s-1}=1}^{\infty} \bigcup_{n_{s}=2}^{\infty} \cdot \left[A(n_{1}, \cdots, n_{s}) \cap \left(\bigcup_{p=1}^{n_{s}-1} \Pi_{X} A(n_{1}, \cdots, n_{s-1}, p) \times I \right) \right.$$

$$\sim \left(\bigcup_{p=1}^{n_{s}-1} A(n_{1}, \cdots, n_{s-1}, p) \cup \bigcup_{p=1}^{n_{s}-1-1} A(n_{1}, \cdots, n_{s-2}, p) \right.$$

$$\left. \cdots \cup \bigcup_{p=1}^{n_{1}-1} A(p) \right) \right].$$

Finally, set $U = A \sim \bigcup_{s=1}^{\infty} V_s$ and check:

- (1) As $I_{i|m}$ is homeomorphic to I, each A(i|m) is a Souslin \mathfrak{F} set in $X \times I$, and so, by the result in [5], $\Pi_X A(i|m)$ is Souslin \mathfrak{F} in X, as is $\Pi_X A(i|m) \times I$ in $X \times I$. Hence each V_s is a \mathfrak{D}_{σ} -set, as is $\bigcup_{s=1}^{\infty} V_s$.
 - (2) $U \subset A$ trivially.
- (3) $\Pi_X A = \Pi_X U$. By (2) it suffices to show that $\Pi_X A \subset \Pi_X U$. Suppose $x \in \Pi_X A$. As $A = \bigcup_{p=1}^{\infty} A(p)$, there exists a least integer, i_1 , such that $x \in \Pi_X A(i_1)$.

By construction of V_1 and the choice of i_1 , V_1 contains all points of A outside $A(i_1)$ which project onto x, but contains no points of $A(i_1)$ which project onto x. That is

$$\Pi_X^{-1}(x) \cap (A \sim V_1) = \Pi_X^{-1}(x) \cap A(i_1) \neq \emptyset.$$

As $A(i_1) \subset F(i_1) = B(i_1) \times C(i_1)$, we have

$$\Pi_X^{-1}(x) \cap A(i_1) \subset \{x\} \times C(i_1),$$

and $x \in B(i_1)$, $C(i_1) \neq \emptyset$.

Again, $A(i_1) = \bigcup_{p=1}^{\infty} A(i_1, p)$, and there exists a first integer, i_2 , such that $x \in \Pi_X$ $A(i_1, i_2)$. By construction of V_2 and the choice of i_1 and i_2 , V_2 contains all points of $A(i_1)$ outside $A(i_1, i_2)$ which project

onto x, but contains no points of $A(i_1, i_2)$ which project onto x. Then $V_1 \cup V_2$ contains all points of A outside $A(i_1, i_2)$ which project onto x, but contains no points of $A(i_1, i_2)$ which project onto x, i.e.

$$\Pi_X^{-1}(x) \cap \left[A \sim (V_1 \cup V_2)\right] = \Pi_X^{-1}(x) \cap A(i_1, i_2) \neq \emptyset.$$

Again $\Pi_X^{-1}(x) \cap A(i_1, i_2) \subset \{x\} \times C(i_1, i_2), x \in B(i_1, i_2), \text{ and } C(i_1, i_2) \neq \emptyset.$ Continuing, we obtain $i \in I$ such that for each $n \ge 1$,

$$\Pi_{X}^{-1}(x) \cap \left[A \sim \left(\bigcup_{s=1}^{n} V_{s}\right)\right] = \Pi_{X}^{-1}(x) \cap A(i \mid n) \neq \emptyset,$$

$$\Pi_{X}^{-1}(x) \cap A(i \mid n) \subset \{x\} \times C(i \mid n),$$

 $x \in B(i|n)$, and $C(i|n) \neq \emptyset$.

Now, as $C(i|n+1) \subset C(i|n)$, and as C(i|n) is a Baire interval of order $\geq n$, it follows that $\bigcap_{n=1}^{\infty} C(i|n)$ is a singleton. Let $\bigcap_{n=1}^{\infty} C(i|n) = \{y\}$. Then

$$(x, y) \in \bigcap_{n=1}^{\infty} [B(i \mid n) \times C(i \mid n)] = \bigcap_{n=1}^{\infty} F(i \mid n) = \bigcap_{n=1}^{\infty} A(i \mid n).$$

Then for all n,

$$(x, y) \in \Pi_X^{-1}(x) \cap A(i \mid n) = \Pi_X^{-1}(x) \cap \left[A \sim \bigcup_{s=1}^n V_s\right]$$

and so

$$(x, y) \in \bigcap_{n=1}^{\infty} \left(A \sim \bigcup_{s=1}^{n} V_{s} \right) = A \sim \bigcup_{s=1}^{\infty} V_{s} = U.$$

Hence $x \in \Pi_X U$ and $\Pi_X A \subset \Pi_X U$.

(4) Finally, for $x \in \Pi_X A = \Pi_X U$, we have from a formula in (3), for each n,

$$\Pi_X^{-1}(x) \cap \left[A \sim \bigcup_{i=1}^n V_*\right] \subset \{x\} \times C(i \mid n),$$

and hence

$$\Pi_X^{-1}(x) \cap U = \bigcap_{n=1}^{\infty} \left[\Pi_X^{-1}(x) \cap \left(A \sim \bigcup_{i=1}^{n} V_n \right) \right]$$

$$\subset \bigcap_{n=1}^{\infty} \left[\left\{ x \right\} \times C(i \mid n) \right] = \left\{ x \right\} \times \bigcap_{n=1}^{\infty} C(i \mid n),$$

so that $\Pi_{X}^{-1}(x) \cap U$ is a singleton. This completes the proof.

The next theorem generalizes Kondô's result on the uniformization of a Souslin \mathfrak{F} set in the product of two complete separable metric spaces. It is well known that a complete separable metric space is a continuous one-to-one image of a closed subset of I (see, e.g. [3, p. 443]).

THEOREM 2. Suppose Y is a continuous one-to-one image of a closed subset H of I, X is a topological space, and E is a Souslin \mathfrak{F} set in $X \times Y$. Then E can be uniformized by the difference between E and a \mathfrak{D}_{σ} -set.

PROOF. Let g be a continuous function defined on H which maps H one-to-one onto Y. Define $\phi: X \times H \rightarrow X \times Y$ by setting

$$\phi(x, i) = (x, g(i))$$
 for all $x \in X$, $i \in H$.

Then, as in the proof of Theorem 18 in [6], ϕ is a continuous one-toone function on $X \times H$ onto $X \times Y$ which preserves Souslin $\mathfrak F$ sets, i.e. if B is a Souslin $\mathfrak F$ set in $X \times H$, then $\phi[B]$ is Souslin $\mathfrak F$ in $X \times Y$. As ϕ is continuous, $A = \phi^{-1}[E]$ is a Souslin $\mathfrak F$ set in $X \times H$ and hence in $X \times I$ as H is closed in I. By Theorem 1, there is a $\mathfrak D_{\sigma}$ -set, V, in $X \times I$ such that $A \sim V$ uniformizes A. We have $V \subset A \subset X \times H$ and evidently V is also a $\mathfrak D_{\sigma}$ -set in $X \times H$. Clearly

$$U = \phi[A \sim V] = \phi[A] \sim \phi[V] = E \sim \phi[V]$$

uniformizes E. Finally, $\phi[V]$ is a \mathfrak{D}_{σ} -set in $X \times Y$ since ϕ preserves Souslin \mathfrak{F} sets and unions, and being one-to-one, also preserves differences.

THEOREM 3. Let X be a topological space, Y a Hausdorff space with a representation Y = K[I] as a descriptive Borel set. Suppose that each open set in $X \times Y$ has a disjoint Souslin representation. Let A be a Souslin $\mathfrak F$ set in $X \times Y$. Then there is a set U which is the difference between A and a $\mathfrak D_{\sigma}$ -set in $X \times Y$, and which satisfies

- (a) $U \subset A$,
- (b) $\Pi_X A = \Pi_X U$, and
- (c) for each $x \in \Pi_X A$, the set $\Pi_Y [\Pi_X^{-1}(x) \cap U]$ is compact and contained in some set K(i) with $i \in I$.

Proof. Let A have the representation

$$A = A[I], \qquad A(i) = \bigcap_{n=1}^{\infty} A(i \mid n),$$

the sets A(i|n) being closed. Then, as in the proof of Theorem 19 in [6], let

$$X \times Y = F[I], \qquad F(i) = \bigcap_{n=1}^{\infty} F(i \mid n)$$

be a representation of $X \times Y$ such that the sets F(i|n) are closed, and each set A(i|n) is the union of those fragments F(i) that it meets, and such that for each $i \in I$, there is a $j \in I$ such that for each integer $m \ge 1$, there exists an integer n with

$$F[I_{i|n}] \subset X \times K[I_{j|m}].$$

As in the proof of that theorem we define a map $\omega: X \times Y \to X \times I$ by setting for each $x \in X$, $y \in Y$, $\omega(x, y) = (x, i)$, where i = i(x, y) is the unique i in I with $(x, y) \in F(i)$. Then again ωA is a Souslin \mathfrak{F} set in $X \times I$. By Theorem 1, there exist Souslin \mathfrak{F} sets B_s , C_s in $X \times I$ such that

$$W = \omega A \sim \bigcup_{s=1}^{\infty} (B_s \sim C_s)$$

uniformizes ωA . Let $U = \omega^{-1}[W]$. Properties (a), (b), and (c) follow for U as in the proof of Theorem 19 in [6]. It remains to show that U is the difference between A and a \mathfrak{D}_{τ} -set in $X \times Y$. We have

$$U = \omega^{-1} \left[\omega A \sim \bigcup_{s=1}^{\infty} (B_s \sim C_s) \right]$$
$$= \omega^{-1} [\omega A] \sim \left(\bigcup_{s=1}^{\infty} (\omega^{-1} [B_s] \sim \omega^{-1} [C_s]) \right).$$

Using Theorem 8 of [6] as in the proof of Theorem 19 in [6], we have $\omega^{-1}[B_s]$ and $\omega^{-1}[C_s]$ Souslin \mathfrak{F} sets in $X \times Y$. Finally, by definition of ω , $\omega^{-1}[\omega F(i)] = F(i)$ for i in I, and as each set A(i|n) is the union of the fragments F(i) that it meets the same is true of each $A(i) = \bigcap_{n=1}^{\infty} A(i|n)$, and so also $\omega^{-1}[\omega A(i)] = A(i)$ for i in I. Hence

$$\omega^{-1}[\omega A]! = \omega^{-1}\left[\omega \bigcup_{i \in I} A(i)\right] = \bigcup_{i \in I} \omega^{-1}[\omega A(i)] = \bigcup_{i \in I} A(i) = A.$$

REFERENCES

- 1. D. W. Bressler and M. Sion, The current theory of analytic sets, Canad. J. Math. 16 (1964), 207-230.
- 2. M. Kondô, Sur l'uniformisation des complémentaires analytiques et les ensembles projectifs de la seconde classe, Japan J. Math. 15 (1939), 197-230.
 - 3. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966.
- 4. C. A. Rogers, Descriptive Borel sets, Proc. Roy. Soc. Ser. A 286 (1965), 455-478.

- 5. C. A. Rogers and R. C. Willmott, On the projection of Souslin sets, Mathematika 13 (1966), 147-150.
- 6. —, On the uniformization of sets in topological spaces, Acta Math. 120 (1968), 1-52.
- 7. W. Sierpinski, Les ensembles projectifs et analytiques, Mémor. Sci. Math. No. 112, Gauthier-Villars, Paris, 1950.
- 8. M. Sion, On uniformization of sets in topological spaces, Trans. Amer. Math. Soc. 96 (1960), 237-245.

Université de Montréal