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1. Introduction. The problem discussed in this paper is a boundary-

value interface-condition problem related to the operator L(Y; Q)

= Y'-PY-WQ. The coefficients P, H, and Q are real-valued »X»

matrix functions defined on a bounded interval [a, b] such that P is

continuous, H is of bounded variation, and Q is constant. The differ-

entiation takes place on the set Sh= {xG[ö, A]|ff'0) exists}, and

the superscript indicates the transpose.

For the case H=0, several sets of auxiliary conditions have been

considered in conjunction with the operator L, including two-point

boundary conditions (Birkhoff and Langer [l]), integral boundary

conditions (Whyburn [9] and Cole [3]) and interface conditions

(Stallard [8], Whyburn and Pignani [7], Zettl [lO], and Conti [4]).

Krall considered the case in which Q is the operator CY(a)+DY(b)

and imposed integral boundary conditions in [ó]. He also considered

a more general case in which H''Q is replaced by a linear combination

of such terms and imposed integral boundary conditions and inter-

face conditions at finitely many points in [5].

One of the usual results in the studies referred to above is the

definition of an adjoint system which is not always in the same form

as the original system. Another is the definition of a Green's function.

Theorems on compatibility have been included in some. In this paper,

similar results appear for the system

(la) L(Y; Q)=0 on Sh,
(lb)   Y—H'Q is absolutely continuous on [a, b],

(le)  U(Y)=AY(a)+BY(b)+f¿dKY=0,
(Id)  V(Y) = CY(a)+DY(b) = Q,

in which K is an «X« matrix whose elements are of bounded varia-

tion on [a, b], and A, B, C, and D are nXn matrix constants such

that the 2nX2n matrix

is nonsingular.

Note that condition (lb) imposes the interface conditions FO+)
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— F(x —) = [H'(x + ) — H'(x — )]Q at each x for which H is discontin-

uous; i.e., at possibly infinitely many points of the interval [a, b).

This is one of the features of this exposition. The other is that the

adjoint system has the same form as system (1).

2. The family of adjoint systems. We denote the set {x G [a, b] \ K'(x)

exists} by Sk and let A*, B*, C*, and D* denote the «X» matrix

constants satisfying

C*'A+A*lC = I, the identity matrix, C*'B+A*tD = 0, and D*lA
+B*fC = 0, D*tB+B*'D=-I.

Definition. The one-parameter family of systems adjoint to

system (1) is defined by

(2a) L*(Z; R)=-Z'-P'Z+IC'R^O on Sk,
(2b) Z — K'R is absolutely continuous on [a, b],

(2c)  U*(Z) =A*Z(a)+B*Z(b) +JabdHZ = 0,
(2d)  V*(Z) = C*Z(a)+D*Z(b)=R,

in which R, the parameter, is an nXn constant matrix.

To justify this choice of form for the adjoint system we present

the following results.

Green s Formula. If F satisfies (lb) and Z satisfies (2b), then

/» b I '    / /■ *       \ ' y*!>
[ZtL(Y;Q)-L*t(Z;R)Y]=Z'Y    -(/    dHZjQ-R'j    dKY.

a \a       \" a / J a

The proof requires two integrations by parts.

Lemma 1. If Y satisfies (lbd) and Z satisfies (2bd), then

f.
b

[ZlL(Y;Q) - L*'(Z;R)Y] = - U*'(Z)V(Y) - V*l(Z)U(Y).

Proof. Combining Green's formula with (Id) and (2d) we have

the left side equal to

Z'Y\   - I   I    dHZj V(Y) - V*l{Z) I   dKY

= Z1y\   + [A*Z(a) + B*Z(b)]'V(Y) + V*'(Z)[AY(a) + BY(b)]
I a

- U*'(Z)V(Y) - V*'(Z)U(Y)

= - U*l(Z)V(Y) - V*'(Z)U(Y).

The justification for the last step is that our choice of A*, B*, C*,

and D* reduces the sum of the first three terms to 0. See [2] for de-
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tails. As an immediate consequence we have the adjoint criterion

theorem.

Theorem 1. If Y satisfies (lbcd) and Z satisfies (2bcd), then

f   [Z'L(Y;Q)-L*'(Z;R)Y] =0.
J a

3. Solution of the system. Let $ denote the fundamental matrix

of F =P Y which satisfies Y(a)=I. Denote 7(3>) by A and 7*(*~")

by A*.

Lemma 2. If A is nonsingular, then system (labd) has at most one

solution for each Q.

Proof. Let Y be the difference of two solutions, Fi and Y2. Then

F' = PF on Sh. Also Fis a.c. on ¡a, b]. Hence Y'=PY on [a, b], so

there exists a Csuch that Y=$C. But V(Y)=V(Yi)-V(Y2) = Q-Q

= 0= F($)C = AC. Hence, C = 0 so that F=0.

Definition. Let

GoO, f) = e*(x)$_1(0 for a g / < z g i

= - |$(x)$-1(0    for a g x < /gi,

G0 (x,0 = - G0(t, x),

70) =  i Go(x, t)dH'(t),    and   7*0) =  f G*(x, t)dK'(l).
Ja Ja

We note that / satisfies (lab) with Q — I and that 7* satisfies

(2ab) with R = I. Hence, any function of the form F=i>C+7Q satis-

fies (lab). To find the C required for F to satisfy (Id) we apply V to

F to obtain V(Y) = V($)C+V(J)Q=AC+V(J)Q = Q. Assuming
A-1 exists, we have F= {$A_1[/— V(J)]+j}Q. Using the notation

Fo=<E>A_1[J— V(J)]+J, we can state the theorem that has just been

proved.

Theorem 2. //A is nonsingular, then Y is a solution of (labd) if and

only if F= YoQ.

Letting Zo=$~u&*-1[l-V*(J*)]+J*, we have the analogous

theorem for adjoint systems.

Theorem 3. If A* is nonsingular, then Z is a solution of (2abd) if

and only if Z-=Z$R.

Theorem 4. 7/A is nonsingular, then there exists a Q^0 such that
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system (1) has a nontrivial solution if and only if U(Yo) is singular.

Proof.  If   U(Y0)  is singular, then there is a Qj^O such that

U(Y0)Q = 0. Y= Y0Q is the desired solution.

If U(Yo) is nonsingular and F is a nontrivial solution of (1), then

F satisfies (labd) so F= Y0Q and Q^O. But then U(Y) = U(Y0)Q
5¿0. This gives a contradiction, which completes the proof.

Theorem 4, applied to the adjoint system, gives us the following:

Theorem 5. If A* is nonsingular, then there exists an R^O such

that system (2) has a nontrivial solution if and only if U*(Z0) is singu-

lar.

As a preface to the theorem relating the compatibility of the two

systems, we prove a lemma.

Lemma 3. If A and A* are nonsingular, then i/*(Z0) = — £/'(F0).

Proof. We note that F0 and Z0 exist and satisfy (labd) and (2abd)

respectively for Q = R = I. We find, by applying Lemma 1, that

/.
[ZÓL(F„;/) - L*\Z0;I)Y] = - U*\z0)V(Y0) - V*\z0)U(Y0).

The left side is 0 because of (la) and (2a). The right side reduces to

- t/*'(Z0) - £/( F0) because of (Id) and (2d). Thus, U*(ZB) = - £/<( F„).

Combining the results of Theorems 4 and 5 and Lemma 3, we ob-

tain the following:

Theorem 6. If A and A* are nonsingular, then there exists a Q^Ofor

which system (1) is compatible if and only if there exists an R^O for

which system (2) is compatible.

4. The Green's function. We obtain the Green's function by ex-

amining our solution to the nonhomogeneous system

(3) L(Y; Q) = F with side conditions (lbcd).

Theorem 7. // A is nonsingular and, for every Q, system (1) is in-

compatible and Fis an integrable matrix, then there exists a Qfor which

system (3) is compatible, with solution

F(x) - Y0(x)Q+J GQ(x, t)F(t)dt - $(x)A-W (f G0A

where

Q = [U(Y0))^[u(^)A-w(J G0f\ -u(j G0f\\.
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Proof. It is easily shown that the function T(x) =fabGo(x, t)F(t)dt

satisfies Y'=PY+F. Hence, F, given by Y=$C+JQ+T, satisfies

L( Y; Q) = F. We need only to determine a suitable C and Q. First, we

apply F to F to obtain Q=AC+V(J)Q+V(T). Solving for C and
replacing it in F, we find that F= Y(,Q-$ArlV(T)-\-T. Now we

apply U to F to obtain

U(Y) = t/(Fo)Ö - U($)A~lV(T) + t/(r) = 0.

Since, for every Q, system (1) is incompatible, we know by Theorem

4 that U(Y0) is nonsingular so we may solve for Q. We have Q

= [C/(Fo)]-1[/7(í>)A-1F(r)-í/(r)] and F= YoQ+T-^A-W(T).
Note that Y-HtQ=(Y0-Ht)Q+T-$A-1V(T), which is a.c. on

[a, b]. Hence, F is a solution of (3).

To obtain a Green's function from the solution F of system (3) we

write F in the form fabG(x, t)F(t)dt. This leads us to the following

representation of the Green's function G, in which U(Y0) is denoted

by T.

G(x,t) = F„0)r-1[[/(i')A-1F(Go) - cf(Go)]
(4)

+ GoO»0 - *0)A-1F(Go),

in which t/(Go) and V(G0) are functions of t. Let

0 = r-1 [£/(*)A-iF(Go) - Z/(Go)].

Theorem 8. If A and T are nonsingular and G is defined by (4), then

(i) L [G(x, Ï) ; d] = 0 ore Sa except at x = t,

(ii) G(x, t)—H'(x)6 is a.c. on [a, b] except at x = t,

(iii)   rj[G(x, t)]=0,

(iv)  F[G(x, ¿)]=0, aw¿

(v) G(t + , t)—G(t —, t)=I, except when t is at a discontinuity of H.

The proof consists of checking, using (4).

Theorems analogous to Theorems 7 and 8 hold for the adjoint sys-

tem, of course.

A comparison of formula (4) and the formula for the Green's func-

tion in [6, p. 251 ] indicates the two are identical. In order to compare

G with Green's functions given in [9, p. 60] and [3, p. 564] we give an

alternative formula for G, the tedious derivation of which relies on

the formulas

U(G0) = h[-A$(a) + B$(b)]<ï>-\t) - 7*'(0
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and

V(Go) = i[-C*(o) + D$(b)]<t>-i(t).

G(x,t) = [*(*) - F0(x)r-1[/($)]A-1C*(a)4>-1(0

(5)

«^(0    for x > <;+ Fo(*)r-iri4*(o) + f ¿fT<ï>

= - [$(x) - Fo(x)r-li/($)]A-1£»#(o)'i'-1(0

- Fo(x)r-M B$(b) + f dK$ U"1^)    for t > x.

In the case H=0, we have F0=i>A~1 so that r-1=A[i/($)]-1 and

FoT-1?/^) =<£. It follows that (5) reduces to the form given in [9]

and is essentially the same as that given in [3].

The relationship between G and G*, the Green's functions for sys-

tems (1) and (2) respectively, has been, in many previous papers, the

motivation for the definition of the adjoint system. Here, we include

it as a consequence of choice of adjoint systems.

Theorem 9. If A and A* are nonsingular and systems (1) and (2)

are incompatible, then G*(x, t) = —Gl{t, x) for x^t.

Proof. Let W and X be any two continuous matrix functions,

and let F and Z be defined by Y{x)=J"aG{x, t)W(t)dt and Z(t)

=faG*(t, x)X{x)dx. Let Q = V( Y) and R = V*(Z). Then L( F; Q) - W,
U(Y)=0, L*(Z; R)=-X, and U*(Z)=0. Applying Theorem 1, we
have fba[Z'W+X'Y]=0; i.e.,

/►fc /» b
Z'{t)W{i)dt + I    X'(x)Y(x)dx = 0.

a J a

It follows that

/» b   f* b
I    X'(x)[c7*'(/, x) + G(x, t)]W(t)dxdt.

a   J a

Since our choice of W and X was arbitrary, we have, using the tech-

nique of Birkhoff and Langer [l, p. 6l], G*'(t, x)-\-G(x, t)=0 for

t^x.

At this point it should be noted that several forms of interface con-

ditions have appeared in the literature, including the following:
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(a) Y(ti+)=AiY(ti-),       i = \, 2, ■ • ■ , m       in [8] and [lO]

(b) AiY(ti+)+BiY(ti-) = Ci,       *-l, ■ ■ ■ ,   m       in   [4]   and

[7]
(c) TZ[AijY(tj+)+BiíY(tJ-))=0,       i = l,---,k       ¡n   [5]
(d) Y(t+)-Y(t-)=Jt        in [2], [3], and this paper.

None includes all others as special cases, though (a) is obviously

included in (b) as is (d) in the case of only finitely many points. A

natural question arises concerning the form of the adjoint of a sys-

tem similar to (1) with condition (lb) replaced by something like

T,Mi«Y(ta+)+BiaY(ta-)] = Ci, i = l, 2,---, k, in which a

ranges over a set which could be infinite.

Bibliography

1. G. D. Birkhoff and R. E. Langer, The boundary problems and development as-

sociated with a system of ordinary linear differential equations of the first order, Proc.

Amer. Acad. Arts Sei. 58 (1923), 51-128.
2. R. N. Bryan, An adjoint system for a nonhomogeneous linear differential system

(to appear).

3. R. H. Cole, General boundary conditions for an ordinary differential system,

Trans. Amer. Math. Soc. Ill (1964), 521-550.
4. R. Conti, On ordinary differential equations with interface conditions, J. Differen-

tial Equations 4 (1968), 4-11.

5. A. M. Krall, Differential operators and their adjoints under integral and multiple

point boundary conditions, J. Differential Equations 4 (1968), 327-336.

6. -■—, Nonhomogeneous differential operators, Michigan Math. J. 12 (1965),

247-255.
7. T. J. Pignani, and W. M. Whyburn, Differential systems with interface and

general boundary conditions, J. of the Elisha Mitchell Scientific Soc. 72 (May 1956),

1-14.
8. F. VV. Stallard, Functions of bounded variation as solutions of differential systems,

Proc. Amer. Math. Soc. 13 (1962), 366-373.
9. W. M. Whyburn, Differential systems with general boundary conditions, Seminar

Reports in Math, Univ. of Calif., Pub. in Math. 2 (1944), 45-61.
10. A. Zettl, Adjoint and self-adjoint boundary value problems with interface con-

ditions, Math. Res. Center, Tech. Report No. 827, 1967.

Ithaca College


