A NOTE ON EXPANSIVE MAPPINGS

RICHARD K. WILLIAMS

Let f be a continuous multi-valued transformation of a metric space X (with metric d) onto itself. For brevity, call f a mapping. If $x \in X$, an orbit of x under f is a set of the form

$$\{x_n: x_0=x, x_{n+1} \in f(x_n) \text{ for each integer } n\}.$$

We say that f is expansive on X if there exists $\delta > 0$ such that $x, y \in X, x \neq y$ implies that for each orbit A of x and for each orbit B of y, there exist $x_n \in A$, $y_n \in B$ such that $d(x_n, y_n) > \delta$. (See [2].) The quantity δ is called an expansive constant for f. This generalizes the concept of expansive homeomorphism studied in [1], for instance.

It is known that if f is a homeomorphism of [0, 1] onto itself, then f is not expansive. (See [1].) The purpose of this paper is to show that f is not expansive if it is a single-valued mapping [0, 1] onto itself, but that there are expansive mappings on [0, 1].

To show this, we need some preliminary results.

THEOREM 1. If f is a single-valued, uniformly continuous mapping of X onto itself, then f is expansive if and only if f^n is expansive for $n \neq 0$.

PROOF. Since it is obvious that f is expansive if and only if f^{-1} is, let us assume that n>0. It is also clear that if f^n is expansive, then f is. Assume therefore that f is expansive with expansive constant δ . By uniform continuity, there exists $\Delta>0$ such that $d(x,y)<\Delta$ implies $d(f^i(x),f^i(y))<\delta$ for $i=0,1,\cdots,n-1$. Suppose that $\Delta/2$ is not an expansive constant for f^n . Then there exist distinct points x and y, an orbit A of x under f^n and an orbit B of y under f^n , such that for each integer k, $x_k \in A$ and $y_k \in B$ implies $d(x_k,y_k) \leq \Delta/2$. Let m be any integer. Then there exist integers i and j such that m=nj+i, where $0 \leq i \leq n-1$. Define $x_m=f^i(x_{nj})$ and $y_m=f^i(y_{nj})$. Since $f^i(f^{nj})=f^m$, the x_m 's and y_m 's define orbits under f of x and y respectively. Also, $d(x_m,y_m)<\delta$ for each m, contradicting the assumption that f is expansive with expansive constant δ .

LEMMA. If f is a single-valued mapping of [0, 1] onto itself, then f^2 has at least two fixed points.

Received by the editors August 21, 1968.

PROOF. Certainly f has at least one fixed point x_0 . We may assume that f(x) > x for $0 \le x < x_0$ and f(x) < x for $x_0 < x \le 1$, for otherwise f and hence f^2 will have at least two fixed points. Hence, by onto-ness, there exists $x_1 \in [0, x_0)$ such that $f(x_1) = 1$ and there exists $x_2 \in (x_0, 1]$ such that $f(x_2) = 0$. By the intermediate value theorem, there exists $x_3 \in (x_0, x_2]$ such that $f(x_3) = x_1$. Hence $f^2(x_3) = 1 \ge x_3$, and f^2 has a fixed point distinct from x_0 .

THEOREM 2. If f is a single-valued mapping of [0, 1] onto itself, then f is not expansive.

PROOF. Suppose that f is expansive with expansive constant δ . Using Theorem 1 and the preceding lemma, we may assume that f has at least two fixed points. It is clear that f can have only a finite number of fixed points, so let a and b be fixed with b>a, and let there be no fixed points between a and b.

Case 1. Let f(x) > x for a < x < b. If f is monotone increasing on [a, b], then for each $x \in (a, b)$, there exists an orbit A of x such that $x_n \in A$ implies $\lim_{n \to \infty} x_n = a$ and $\lim_{n \to \infty} x_n = b$. It is therefore clear that there exist x, $y \in (a, b)$ with orbits A and B respectively such that for each integer n, $x_n \in A$, $y_n \in B$ implies $d(x_n, y_n) < \delta$. (This is essentially the proof of the nonexistence of an expansive homeomorphism on [0, 1] given in [1].)

Suppose there exists $c \in (a, b)$ such that f is monotone increasing on [a, c], and that c is the smallest such number. Then there exist distinct points x and y, arbitrarily near c, such that f(x) = f(y), and there exist orbits A of x and B of y such that $x_n \in A$, $y_n \in B$, n < 0, implies $d(x_n, y_n) < \delta$. (Again, f is a homeomorphism on [a, c], and $\lim_{n \to -\infty} x_n = \lim_{n \to -\infty} y_n = a$.)

Finally, suppose that f is not monotone on any interval [a, c], where a < c < b. Then, by repeated use of the intermediate value theorem, there exist distinct x and y in $[a, a+\delta]$, with orbits A and B respectively such that f(x) = f(y), and $x_n \in A$, $y_n \in B$, n < 0 implies $x_n \in [a, x]$, $y_n \in [a, y]$. Thus $d(x_n, y_n) \le \delta$ for each n, again contradicting the expansiveness of f.

Case 2. Let f(x) < x for a < x < b. Considering intervals of the form [c, b], a < c < b, the analysis of Case 1 can essentially be repeated, and the theorem follows.

The above theorem is not valid if one does not assume that f is single-valued. Consider the following example:

Let g be defined on [0, 1] by $g(x) = e^{2\pi i x}$, and let h be defined on the unit circle by $h(z) = z^2$. Let f be the (multi-valued) mapping of [0, 1] onto itself defined by $f(x) = g^{-1}hg(x)$. It is clear that $f^n(x) = g^{-1}h^ng(x)$

for $n=1, 2, \cdots$, and it is also clear that the positive iterates of h spread out distinct points on the unit circle. It follows that f is an expansive mapping on [0, 1].

BIBLIOGRAPHY

- 1. B. F. Bryant, Expansive self-homeomorphisms of a compact metric space, Amer. Math. Monthly 69 (1962).
 - 2. R. K. Williams, Expansive mappings, Amer. Math. Monthly 75 (1968).

SOUTHERN METHODIST UNIVERSITY