ON THE ZEROS OF THE RIEMANN ZETA-FUNCTION
BRUCE C. BERNDT
1. Introduction. If
R(s) = 77°IT'(s/2)¢(s),

the functional equation for the Riemann zeta-function {(s) is given
by R(s) =R(1—s). Berlowitz [1] has recently shown that if 0 <\ <1,
then both Re R(A+it) and Im R(\+4t) vanish infinitely often. In
this note we shall give an improvement on this result.

Let Ng(\, T) denote the number of zeros for Re R(\+1if) on
0<t<T. Similarly, Ni(\, T) denotes the number of zeros for
Im R(N\+4t) on 0<t<T.

THEOREM. If 0<A<1, then

(1.1) Ne(\, T) > AT
and

1.2) Ni(\, T) > AT,
where A=A(\).

Here and elsewhere 4, 4, and 4, denote positive constants and K,
and K, complex constants, none of which is necessarily the same with
each occurrence.

For A =1, the result follows from a famous theorem of Hardy and
Littlewood [2, p. 222]. In fact, we use their method [2, pp. 222-226]
in our proof.

2. Proof of the theorem. We prove (1.1) for the case 0 <\ <1. The
proof for <A <1 will then follow from the functional equation
R(s)=R(1—s).

From [1] we have

1 0
Z—f Re R(\ + it)ettdt = (e™ + e~ UMY (%) — L(eM + V),
TV —o

where ¢/(x) = Y., exp(—n?rx) and Re e-%>0. Putting
E=—i(n/4 —0/2) — vy, 8> 0,
we see that
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F(t) =

Gy Re RO ittt
T,

and
f(y) = (Mitr/a—di2rtu) o g(-N{itr/4=/2+ul )y (gi(r/2-Dr+2v)

— %(e—k{i(ﬂr/4—6/2)+v] + e—(l—)\){i(*l4—312)+v})

are Fourier transforms. We now use formula (10.7.1), [2, p. 223], i.e.

fw f‘hLHF(u)du

-0

2 1/H
dt < 232f | 1(9) |2y
2.1) °

+8 f 1ol

where H=1 is a constant to be chosen later. Letting y=log ¥ and
G=¢E we see that (2.1) yields

© t+H 2
f f F(u)du| dt
—o0 t
G
(2.2) =0 {Hzf | P(ei 138 52) lzdx}
1
® x1—2)\
(7 /2—08) 42} |2
+O{f0 | (e x?) | logzxdx} +0(H).

The first integral on the right side of (2.2) is estimated in [2, p.
224], and is O(H8~Y/2) as § tends to 0.
To estimate the second we write

l P(etx 129 2) Iz

2.3) = Y exp|—2u?rx? sin 8]
. n=1

+ > > exp[—(m?® + n?)wa? sin b + i(m? — n?)wa? cos b).
m=1 n=1
ms<n

To examine the contribution of the first sum on the right side of (2.3),
divide the interval (G, «) into the subintervals (G, 6~Y%) and
(6-Y2, ©) and let the corresponding integrals be denoted by I; and
I,, respectively. The sum under consideration is O(x~16-Y2), and so
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sU e
Li=0 (6-1/2 f dx>
@ xlog?x

= O(H),

upon an integration by parts. The sum is also O(exp(—2wx28)) for
x20=1, and so

o x1—2)\
I, = O(f exp(—-21rx26)dx>
6_112 log2 X

=0 (6* f x exp(— 2wx?5) dx)
§-1/2

= 0™ 1).
The contribution of the second term on the right side of (2.3) is
O(Hb§-1?) by the same argument as that in [2, p. 224].
Letting 6=1/T and
tHH
I= f Re R(\ + du)e™/+1Tudy,
t
we have shown that

2T
(2.4) f | 1]2dt = o(HT™).
T

From the functional equation for {(s),

Re R\ + it) = 3{ R\ + it) + RO\ — i)}
= 3R+ i) + RA — A + it)}.

Using the above and Stirling’s formula for T'(¢+4f), we find that

| Re R(A + it) | 2 e=t/4| Kyt @02\ + if) + Kot 21 — X + if) | .
Thus, if T<t=<2T,

t+H
J = f | Re R()\ + ’Lu) I e(V/FIIT)udu
t

t+H
> T(x—l)/zf | Kit(\ + iu) + K22 (1 — N + iu) | du
t

> TO-D/2

t++H
f {E O\ + i) + Kot 20(1 — N + iw) } du|.
t
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Using a simple approximation for {(s) [2, p. 67], we have

[ (o)

+K 2u1/2-)\< Z pr—l—iu O(T"‘l)>} du

nsAT

} + OHT?).

Ta-Miz2J =

t+H
f Z n—iudy
t

2snsAT

t+H
+0{‘f RV Z p—1-ivgy,
t

25nsAT

2 (4 + AT E +0

Employing the second mean value theorem for integrals to the
second integral on the right side, we have

Ta-D1R] 2 AT + O(HT)

+ 0{ > (1/mrieHD log n — 1/mMitlog ) }
(2.5) 25nSAT
+ 0 {Tuz-x E (1 /nl—x+i(z+3) log n—1 Y aman log ) }
25nsAT

> A, TV H + ¥,

say, where <7 <t+H.
We show next that

27
(2.6) f . | ¥|2dt = o(T>).

2

Clearly, it is sufficient to examine
> 1/mMitlogn| dt

f 27
T 2snsAT

o7
=f > 1/mMitlogm D, 1/mitlogn dt
T

2smgAT 2snsAT

2T

=T> 1/nlogtn+ 2 D, (1/(mn)*logmlogn) (n/m)*dt
T

25ngAT 2smmngAT
m=n

= 0(T*) + 0( 33" 1/(mn)* log m log n log n/m) .

2sm<ng AT

This last sum is estimated in exactly the same manner as (7.2.1),
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[2, p. 116], and is O(T?*~®). Replacing A by 1 —\ in the above calcula-

tion, we find
f 2T
T

Thus, we have proved (2.6).
Now let S denote the subset of (T, 2T) where I =J. Thus,

fS fS

@7 fsmdtéfrﬂmdté {Tf:Thlzdt}w

< A HIPTINE,

Also, from (2.5) and (2.6),

2
E 1/n1Mit| gt = o(T™).

25nsAT

f Jdt = TO-1/2 f (A TV H + ¥)dt
S N
b7y
= AHTm(S) — TO-DI2 f | ¥ ds
T

T 27 1/2
> AHTm(S) — T““W{T f |~1/|2dz}
T

= A HTm(S) — AT,

where m(S) denotes the measure of S. Combining the above with
(2.7), we find that

A HTNom(S) £ AT 4 AHVRTIN,
or
m(S) £ AH-T.

Divide (T, 27T) into [T/2H] pairs of abutting intervals j;, j», each,
except for possibly the last j,, of length H. Then, if j; does not contain
entirely points of .S, either j; or j» contains a zero of Re R(A+4t). Thus,
if there are » ji-intervals containing only points of S, vH <m(S), and
Re R(\+1t) has at least

[T/2H) —v > T/3H — AT/H3? > T/4H

zeros if H is large enough.
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To prove (1.2) we merely observe that
i Im RO\ + it) = 3{R(\ + i) — R(1 — X + i)},
and then proceed as before.

REFERENCES

1. B. Berlowitz, Extensions of a theorem of Hardy, Acta Arith. 14 (1968), 203-207.
2. E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press,
Oxford, 1951.

UNIVERSITY OF ILLINOIS



