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Let F be a field of algebraic functions of one variable having the

finite field K as exact field of constants. The class number of F is

defined as the order of the finite group, C0(F), of divisor classes of

degree zero. Let L be the unique cyclic extension of K of degree

n, E = F-L the corresponding constant extension with galois group G.

Since K is perfect, the canonical homomorphism of the group of

divisor classes of F in the group of divisor classes of E is an injection

[2, p. 477]. If he, hF denote the class numbers of E and F, respec-

tively, we have hE = hp-k, for some integer k. The purpose of this

note is to prove the following two theorems:

Theorem 1. If E/F is a constant extension of the algebraic function

field F and if G is the corresponding galois group, then H'(G, Co(E)) = 0

for all i.

Theorem 2. If E/F is a constant extension of prime degree p, then

hE = hp-k where k = \ mod p if p\hp and k = 0 mod p' if p\hp and t
is the p-rank of C0(F).

Throughout this note E/F will denote a cyclic constant extension

of the algebraic function field F with galois group G generated by a.

In a natural fashion G operates on the prime divisors of E. Thus if

Nb/f = í+o'+ • • ■ +op"-1, n= [E: F], we have for a prime <? of E,

that NE/f<? = Pn((P) where p = rstFS> and n(G>) = [E(6>) : F(p) ] the degree

of the corresponding completions since the extension is everywhere

unramified. We see easily then that degF/KNE/p((P) =n degE/¿<P. This

norm map extends from the prime divisors to the full divisor group

D(E) in the natural way and it is compatible with the field norm and

formation of principal divisors: that is, if we use parentheses to denote

principal divisors and aEE, then Ne/p(a) = (Ns/pa). We shall write

the group operation in D(E) additively and denote as usual the sub-

group of principal divisors by P(E) and the divisors of degree zero by

Do(E). Similar notations will be used for the field F.

I. Proof of Theorem 1. In the normal extension E/F all primes

(P of E extending a fixed prime p of 7 are conjugate. Thus for aED0(E)

we have a' = a tor all arEG if and only if aED0(F); therefore D0(E)a
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= Do(F). From the exact G-sequence 0—>L—>E-^>P(E)—>0 we get

the exact sequence 0-+L°->EG->P(E)a->H1(G, L)^FP(G, E)

->Hl(G, P(E))-+H2(G, Z,)-» • • • . Using Hubert's Theorem 90 and

the fact that L is a finite field, we conclude

(1) P(E)a = P(F)    and    Hl(G, P(E)) = 0.

Consequently from the exact G-sequence 0—>/*(£)—>D0(E)—>C0(E)

—>0 and (1) we derive

(2) Co(£)° = Co(F).

We next claim that the induced map Ne/f'- Co(-E)—>C0(F) is sur-

jective. Let J(E) denote the idèle group of E and define <f>: J(E)

—»£>(£) by <p(A) = '^vly(A)S' where v<¡>(A) = v<y(A<P), A® the (P com-

ponent of the idèle A. cp(A) is a divisor since A is a unit almost every-

where. It is easily checked that^issurjective. Let J(E)<s=qbr1(Do(E)).

Recall that J(E) is also a G-module and the norm on idèles is com-

patible with the norm on divisors [4]. Thus we have the exact and

commutative diagram:

1(E)0 -^ D0(E) -> 0

(3) Ne/f j 1 NB/f

J(F)°-t D0(F) ^ 0

If 1(E) denotes the idèle class group of E, then class field theory

[l, p. 79] asserts that J(F)0/FCNE/f(I(E)). Now suppose aEC0(F)

and aEDo(F) is a representative for a. Let AEJ(F)0 be such that

(f>(A) = u. Then there exists 73£/(£)° such that NB/pB=A(ß), ßEF.

If b is the class of (¡>(B) in C0(E), we conclude from (3) that Ns/Fb=a.

Hence Ne/f is surjective.

We have therefore proved H°(G, C0(E))=0. But since C0(E) is a

finite group the Herbrand quotient gives that H1(G, C0(E))=0 as

well. Using that G is cyclic and consequently has periodic cohomology,

we have proved Theorem 1.

II. Proof of Theorem 2. Since C0(E)0 = Co(F) we can induce a G-

action on the factor group C0(E)/Co(F) and get the exact G-sequence

0 -> Co(F) -+ Co(E) -» Co(E)/Co(F) -> 0.

From this we derive

0 -+ C„(F)o -► Co(£)° -+ (C„(£)/C„(F))« -> FHG, C0(F))

-* ^(G, CB(E)) -+ • • • .
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Using Theorem 1 and the trivial action of G on Co(F) we see that

(4) (d(E)/d(F))G S HKG, C0(F)).

Furthermore in the case of trivial action we have [3, p. 142]

(5) | HHG, Co(F)) |   = p',    where I is the /»-rank of C0(F).

Therefore if p\ hF, we have immediately that for k= \ C0(E)/Co(F)\,

k=0 mod p\ since (C0(E)/C0(F))0 is a subgroup of C0(Ti)/Co(7).

On the other hand, taking the decomposition of Co(E)/Co(F) into

G orbits we see that k= ^,[G: Hc] where the summation extends

over a set of representatives for the various orbits and 77c is the corre-

sponding stabilizer. Therefore if G is of prime order p, we have

[G:77c] = l or p and [G:77c] = l if and only if G = HC. Tracing the

action of G on C0(E)/Co(F), we see that this is the case if and only if

cE(Co(E)/d(F))G. Therefore we have

(6) ¿=  \(Co(E)/Co(F))°\  +sp.

Hence if p\h? from (4), (5) and (6) we conclude that k=l mod p.

The following remarks are immediate consequences of Theorem 2.

1. If F is a function field in one variable with finite field of con-

stants k and p is a prime with pa||/îF, aïïl, then there is a constant

extension E/F with pa+1\ Ae.

2. If E/L is a constant extension of the algebraic function field

F/K of prime degree p then p\hß ii and only if p\hp (hp^l).
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