WEIGHT SPACES AND IRREDUCIBLE REPRESENTATIONS OF SIMPLE LIE ALGEBRAS

F. W. LEMIRE

Let L denote a simple Lie algebra over an algebraically closed field K of characteristic zero. Harish-Chandra [2] has shown that to each one-dimensional representation (λ, K) of the Cartan subalgebra $\mathfrak R$ of L we may associate an irreducible representation of L admitting λ as a "highest weight function". This has been generalized by the author [3] by showing that if $\mathfrak C$ is the centralizer of $\mathfrak R$ in U, the universal enveloping algebra of L, and (γ, K) is a one-dimensional representation of $\mathfrak C$ we may again construct an irreducible representation of L admitting $\gamma \downarrow \mathfrak R$ as a weight function. In this paper we make a further study of the relationship between the representations of L and their weight spaces.

1. Weight spaces of irreducible representations. It is well known that there exists a one-one correspondence between the representations of L and those of U which preserves irreducibility. Throughout this paper we will not distinguish between a representation of L and its unique extension to U.

DEFINITION 1. Let (ρ, V) be a representation of L. Then for each linear functional $\lambda \in \mathcal{K}^*$, the dual linear space of the Cartan subalgebra, we define

$$V_{\lambda} = \{ v \in V \mid \rho(H)v = \lambda(H)v \ (\forall H \in \mathfrak{M}) \}.$$

Also we denote by $[\rho:\lambda]$ the dimension of the subspace V_{λ} . If, in particular, $[\rho:\lambda] > 0$ we call λ a weight function of the representation ρ and V_{λ} the corresponding weight space.

It is clear from the definitions of C and V_{λ} that for any element $c \in C$, $\rho(c)$ maps V_{λ} into V_{λ} .

DEFINITION 2. Let (ρ, V) be a representation of L and $\lambda \in \mathcal{H}^*$. Then we define a representation $(\eta(\rho, \lambda), V_{\lambda})$ of \mathcal{C} by setting $\eta(\rho, \lambda)(c) = \rho(c) \downarrow V_{\lambda}$ for all $c \in \mathcal{C}$.

LEMMA 1. If (ρ, V) is an irreducible representation of L and $\lambda \in \mathfrak{IC}^*$ such that $[\rho:\lambda] > 0$ then $(\eta(\rho, \lambda), V_{\lambda})$ is a nontrivial, irreducible representation of \mathfrak{C} .

Presented to the Society, August 28, 1968 under the title Weight spaces and irreducible representations; received by the editors September 10, 1968.

PROOF. It suffices to show that for an arbitrary nonzero element $v \in V_{\lambda}$ we have $\eta(\rho, \lambda)(\mathfrak{C})(v) = V_{\lambda}$, and this follows as a special case of equation (2.4) in a paper by Bouwer [1].

We now observe that the representation $\eta(\rho, \lambda)$ determines ρ in the following sense.

LEMMA 2. Given two irreducible representations (ρ_1, V_1) and (ρ_2, V_2) of L such that there exists a linear functional $\lambda \in \mathbb{K}^*$ with $[\rho_1:\lambda]$ and $[\rho_2:\lambda] > 0$ and $\eta(\rho_1,\lambda)$ equivalent to $\eta(\rho_2,\lambda)$, then ρ_1 is equivalent to ρ_2 .

PROOF. We first observe that if M is a maximal left ideal of C then there exists a unique maximal left ideal M' of U containing M. In fact, if M'' denotes the left ideal of U generated by M we can easily see that $M'' \neq U$ and hence the existence of M' is established by a simple application of Zorn's Lemma. For the uniqueness it suffices to show that the left regular representation $(\pi, U/M'')$ of U modulo M'' has a unique maximal $\pi(U)$ -invariant subspace. Clearly U/M'' $=\sum \bigoplus (U/M'')_{\gamma}$ and if W is a $\pi(U)$ -invariant subspace of U/M'' we have $W = \sum \bigoplus (W \cap (U/M'')_{\gamma})$. Since $(U/M'')_{\lambda}$ is the representation space of an irreducible representation of $\mathfrak C$ it follows that $W\cap$ $(U/M'')_{\lambda} = (U/M'')_{\lambda}$ or $W \cap (U/M'')_{\lambda} = \{0\}$. In the first case $1+M'' \in W$ and hence W=U/M''. Therefore every proper $\pi(U)$ invariant subspace of U/M'' is a subspace of $\sum_{\gamma\neq\lambda} \oplus (U/M'')_{\gamma}$ $\neq U/M''$, and hence W_{ϵ} , the sum of all proper $\pi(U)$ -invariant subspaces of U/M'', is the unique maximal proper $\pi(U)$ -invariant subspace of U/M''.

Next suppose M_1 and M_2 are two maximal left ideals of $\mathfrak C$ such that the left regular representations of $\mathfrak C$ modulo M_1 and $\mathfrak C$ modulo M_2 are equivalent. Then we claim that the left regular representations of U modulo M_1' and U modulo M_2' are equivalent. Indeed by assumption we have a $\mathfrak C$ -linear map $\phi \colon \mathfrak C/M_1 \to \mathfrak C/M_2$. Let $\phi(1+M_1)=x+M_2$ and define $\phi' \colon U/M_1' \to U/M_2'$ by setting $\phi'(u+M_1')=ux+M_2'$. It is then readily checked that ϕ' establishes the required equivalence.

Finally assume (ρ_1, V_1) and (ρ_2, V_2) are two irreducible representations of L such that there exists a linear functional $\lambda \in \mathfrak{X}^*$ with $[\rho_i:\lambda] > 0$ and the representations $(\eta(\rho_1,\lambda), (V_1)_{\lambda})$ and $(\eta(\rho_2,\lambda), (V_2)_{\lambda})$ are equivalent. Choose nonzero elements $v_i \in (V_i)_{\lambda}$ and define $M_i = \{c \in \mathcal{C} \mid \eta(\rho_i, \lambda)(c)v_i = 0\}$ for i = 1, 2. Clearly M_i is a maximal left ideal in \mathcal{C} and $(\eta(\rho_i, \lambda), (V_i)_{\lambda})$ is equivalent to the left regular representation of \mathcal{C} modulo M_i . By assumption then the left regular representations of \mathcal{C} modulo M_1 and \mathcal{C} modulo M_2 are equivalent. As above, this implies that the left regular representations of U modulo M_1 and U modulo M_2 are equivalent. Then, by the unique-

ness of M_i' we have $M_i' = \{u \in U | \rho_i(u)v_i = 0\}$ and (ρ_i, V_i) is equivalent to the left regular representation of U modulo M_i' . Therefore (ρ_1, V_1) is equivalent to (ρ_2, V_2) .

The result of Lemma 2 suggests a closer look at the irreducible representations of C.

DEFINITION 3. A nontrivial representation (η, W) of \mathfrak{C} is said to be λ -weighted for some linear functional $\lambda \in \mathfrak{R}^*$ iff it is irreducible and $\eta(H-\lambda(H)\cdot 1)=0$ for all $H\in \mathfrak{R}$.

LEMMA 3. Every λ -weighted representation of $\mathfrak C$ is equivalent to a representation of the form $(\eta(\rho, \lambda), V_{\lambda})$ for some irreducible representation (ρ, V) of L with $[\rho:\lambda] > 0$.

PROOF. Let (η, W) be a λ -weighted representation of $\mathfrak C$ and select a nonzero element $w \in W$. Set $M = \{c \in \mathfrak C \mid \eta(c)w = 0\}$. Clearly M is a maximal left ideal of $\mathfrak C$. Now we claim that the left regular representation of U modulo M' (the unique maximal left ideal of U containing M) is the required irreducible representation. This follows immediately on observing that $M' \cap \mathfrak C = M$. To prove this latter fact we note that $M \subseteq M' \cap \mathfrak C$ by definition of M'. Then take any $x \in M' \cap \mathfrak C$ and assume $x \notin M$. By the maximality of M in $\mathfrak C$ there exists an element $y \in \mathfrak C$ such that $yx-1 \in M$ and hence $1 \in M'$. This contradiction implies that $M = M' \cap \mathfrak C$.

Finally combining the results of this section we have

THEOREM 1. For any fixed linear functional $\lambda \in \mathcal{K}^*$ there is a one-to-one correspondence between the set of equivalence classes of irreducible representations (ρ, V) of L with $[\rho:\lambda] > 0$ and the set of equivalence classes of λ -weighted representations of \mathbb{C} .

- 2. Relations between weight spaces. Two natural questions now arise:
- (1) Suppose (ρ, V) is an irreducible representation of L such that $[\rho:\lambda_1]>0$ and $[\rho:\lambda_2]>0$ for two different linear functionals λ_1 , $\lambda_2\in \mathfrak{R}^*$. Then how are the representations $\eta(\rho,\lambda_1)$ and $\eta(\rho,\lambda_2)$ related?
- (2) Conversely, let (η_i, W_i) be a λ_i -weighted representation of e for i = 1, 2. If $\lambda_1 \neq \lambda_2$, under what conditions does there exist a common irreducible representation (ρ, V) of L such that η_i is equivalent to $\eta(\rho, \lambda_i)$ for i = 1, 2?

Unfortunately we have been unable to provide a "C-internal" answer to these questions; however, we do have the following straightforward result which we will use in the next section for somewhat more satisfactory results in a restricted case.

THEOREM 2. Let (η_i, W_i) be a λ_i -weighted representation of $\mathbb C$ and let M_i denote a maximal left ideal of $\mathbb C$ such that η_i is equivalent to the left regular representation of $\mathbb C$ modulo M_i for i=1, 2. Then there exists an irreducible representation (ρ, V) of L such that η_i is equivalent to $\eta(\rho, \lambda_i)$ (i=1, 2) iff there exists an element $x \in U - M_2'$ such that $M_1' x \subseteq M_2'$.

PROOF. If there exists an element $x \in U - M_2'$ such that $M_1' x \subseteq M_2'$ then the map $\phi: U/M_1' \to U/M_2'$ defined by $\phi(u+M_1') = ux+M_2'$ is a linear isomorphism which establishes the equivalence between the left regular representation of U modulo M_1' and of U modulo M_2' . Let (ρ, V) be any representation in this equivalence class; it is clear that η_i is equivalent to $\eta(\rho, \lambda_i)$ of i=1, 2.

Conversely if there exists an irreducible representation (ρ, V) of L such that η_i is equivalent to $\eta(\rho, \lambda_i)$ then M_i can be considered to be the left annihilator ideal of some nonzero element $v_i \in V_{\lambda_i}$ —i.e. $M_i = \{c \in \mathcal{C} \mid \rho(c)v_i = 0\}$ —for i = 1, 2. Moreover, as in §1 we have $M'_i = \{u \in U \mid \rho(u)v_i = 0\}$ for i = 1, 2. Since ρ is assumped to be irreducible there exists an element $x \in U$ such that $\rho(x)v_2 = v_1$ and hence $x \notin M'_2$ and $M'_1 x \subseteq M'_2$.

3. One-dimensional weight spaces. In the case of all finite-dimensional irreducible representations or, more generally, all irreducible representations (ρ , V) of L admitting a "highest weight", it is well known that there always exists at least one linear functional $\lambda \in \mathfrak{R}^*$ such that $[\rho:\lambda]=1$. On the other hand, if (ρ, V) is an irreducible representation of L for which there exists a linear functional $\lambda \in \mathfrak{R}^*$ with $[\rho:\lambda]=1$ then, as above, ρ is determined by $\eta(\rho,\lambda)$ and moreover $\eta(\rho,\lambda)$ may be regarded as an algebra homomorphism from \mathfrak{C} into K. This particular class of representations of L was studied by the author in a previous paper [3]. Unfortunately, it is possible for inequivalent one-dimensional representations of \mathfrak{C} to yield equivalent representations of L. The next two theorems are aimed at shedding some light on the relationship between one-dimensional representations of \mathfrak{C} which yield equivalent representations of L.

THEOREM 3. Let (η_i, K) be a λ_i -weighted one-dimensional representation of \mathbb{C} for i = 1, 2. If there exists an irreducible representation (ρ, V) of L such that η_i is equivalent to $\eta(\rho, \lambda_i)$ for i = 1, 2 then there exist elements $x, y \in U$ such that $yx \in \mathbb{C}$, $\eta_2(yx) = 1$ and $\eta_1(c) = \eta_2(ycx)$ for all $c \in \mathbb{C}$.

PROOF. Choose $0 \neq v_i \in V_{\lambda_i}$. Then $M_i = \{c \in \mathbb{C} \mid \rho(c)v_i = 0\}$ is a maximal left ideal of \mathbb{C} such that η_i is equivalent to the left regular representation of \mathbb{C} modulo M_i . By Theorem 2 there exists an element $x \in U - M_2'$ such that $M_1'x \subseteq M_2'$. Since $x \in M_2'$ there exists an element $y \in U$ such that $yx - 1 \in M_2'$. Then clearly $yx \in \mathbb{C}$ and $\eta_2(yx) = 1$. Finally, since $\eta_2(y(c - \eta_1(c) \cdot 1)x) = 0$, $\eta_1(c) = \eta_2(ycx)$ for all $c \in \mathbb{C}$.

As a partial converse to Theorem 3 we have:

THEOREM 4. Let (η_i, K) be a one-dimensional λ_i -weighted representation of \mathbb{C} and denote $\operatorname{Ker}(\eta_i)$ by M_i for i=1, 2. If there exists an element $x \in U - M_2'$ such that for all $y \in U$ satisfying $yx \in \mathbb{C}$ we have $\eta_2(ycx) = \eta_1(c)\eta_2(yx)$ for all $c \in \mathbb{C}$ then there exists an irreducible representation (ρ, V) of L such that η_i is equivalent to $\eta(\rho, \lambda_i)$ for i=1, 2.

PROOF. We first observe that the set

$$\{u \in U \mid (\forall y \in U : yu \in \mathcal{C}) yu \in M_i\}$$

is a maximal left ideal of U containing M_i and hence is equal to M'_i . Let $(\pi, U/M'_2)$ denote the left regular representation of U modulo M'_2 . For all $c \in \mathbb{C}$ we have $cx \equiv \eta_1(c)x \mod M'_2$. Suppose, to the contrary, that $cx - \eta_1(c)x \in M'_2$. By maximality of M'_2 , there exists an element $y \in U$ such that $y(cx - \eta_1(c)x) - 1 \in M'_2$ —i.e. $\eta_2(ycx - \eta_1(c)yx) = 1$. However, by assumption $\eta_2(ycx - \eta_1(c)yx) = 0$. This contradiction implies that $cx - \eta_1(c)x \in M'_2$. Therefore η_1 is equivalent to $\eta(\pi, \lambda_1)$.

4. Some interesting questions. Having established the close relationship between the representations of L and those of C, we are now interested in looking at the irreducible representations of C and the structure of C. In this regard we have far more questions than answers. In previous papers [3], [4] we have shown that C is a finitely generated subalgebra of C and if C and if C and if the associated irreducible representation C and C then the associated irreducible representation C as for all C.

From these observed facts we face the following questions:

- (1) Are all λ -weighted (resp. irreducible) representations of \mathfrak{C} finite-dimensional?
- (2) Are all irreducible representations of \mathfrak{C} λ -weighted for some linear functional $\lambda \in \mathfrak{R}^*$?
- (3) If (η, W) is a finite-dimensional λ_0 -weighted representation of L, does there exist a linear functional $\lambda \in \mathbb{X}^*$ such that $[\rho:\lambda] = 1$?

BIBLIOGRAPHY

- 1. I. Z. Bouwer, Standard representations of simple Lie algebras, Canad. J. Math. 20 (1968), 344-361.
- 2. Harish-Chandra, On some applications of the universal enveloping algebra of a semisimple Lie algebra, Trans. Amer. Math. Soc. 70 (1951), 28-96.
- 3. F. W. Lemire, Irreducible representations of a simple Lie algebra admitting a one-dimensional weight space, Proc. Amer. Math. Soc. 19 (1968), 1161-1164.
- 4. —, Note on weight spaces of irreducible linear representations, Canad. Math. Bull. 11 (1968), 399-403.

UNIVERSITY OF BRITISH COLUMBIA