WEIGHT SPACES AND IRREDUCIBLE
REPRESENTATIONS OF SIMPLE
LIE ALGEBRAS

F. W. LEMIRE

Let L denote a simple Lie algebra over an algebraically closed field
K of characteristic zero. Harish-Chandra [2] has shown that to each
one-dimensional representation (A, K) of the Cartan subalgebra 3¢
of L we may associate an irreducible representation of L admitting N
as a “highest weight function”. This has been generalized by the
author [3] by showing that if @ is the centralizer of 3¢ in U, the uni-
versal enveloping algebra of L, and (y, K) is a one-dimensional
representation of € we may again construct an irreducible repre-
sentation of L admitting v | 3C as a weight function. In this paper we
make a further study of the relationship between the representations
of L and their weight spaces.

1. Weight spaces of irreducible representations. It is well known
that there exists a one-one correspondence between the representa-
tions of L and those of U which preserves irreducibility. Throughout
this paper we will not distinguish between a representation of L and
its unique extension to U.

DEFINITION 1. Let (o, V) be a representation of L. Then for each
linear functional AE3C*, the dual linear space of the Cartan subal-
gebra, we define

"= {0 EV|p(H) = \(H)v (VH € %)}.

Also we denote by [p:\] the dimension of the subspace V. If, in
particular, [0:A\]>0 we call N a weight function of the representation
p and V) the corresponding weight space.

It is clear from the definitions of € and V), that for any element
cEe, p(c) maps V), into V).

DEFINITION 2. Let (p, V) be a representation of L and NE3C*,
Then we define a representation (5(p,\), V) of € by setting 5(p, N) (¢)
=p(c) | " forall cEe.

LemMmA 1. If (p, V) is an irreducible representation of L and NE3C*
such that [p:N\]>0 then (3(p, N), V) is a nontrivial, irreducible repre-
sentation of C.
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Proor. It suffices to show that for an arbitrary nonzero element
v& V> we have 5(p, N\)(€)(v) = V3, and this follows as a special case of
equation (2.4) in a paper by Bouwer [1]. |

We now observe that the representation 7(p, ) determines p in the
following sense.

LEMMA 2. Given two irreducible representations (p1, Vi) and (ps, Vs)
of L such that there exists a linear functional NE3* with [p1:\] and
[02:N] >0 and n(p1, N) equivalent to n(ps, N), then py is equivalent to p,.

ProoFr. We first observe that if M is a maximal left ideal of @ then
there exists a unique maximal left ideal M’ of U containing M. In
fact, if M’ denotes the left ideal of U generated by M we can easily
see that M’ £ U and hence the existence of M’ is established by a
simple application of Zorn's Lemma. For the uniqueness it suffices
to show that the left regular representation (v, U/M"') of U modulo
M'"" has a unique maximal =(U)-invariant subspace. Clearly U/M"
= > ®(U/M"), and if W is a w(U)-invariant subspace of U/M" we
have W= > ® (WN(U/M"),). Since (U/M""), is the representation
space of an irreducible representation of € it follows that WN
(U/M"W2=(U/M"W or WN(U/M")»n={0}. In the first case
14+M"EW and hence W=U/M". Therefore every proper w(U)-
invariant subspace of U/M’ is a subspace of D ,.a®(U/M"),
#U/M", and hence W,, the sum of all proper #(U)-invariant sub-
spaces of U/M", is the unique maximal proper w(U)-invariant
subspace of U/ M".

Next suppose M; and M, are two maximal left ideals of @ such that
the left regular representations of @ modulo M; and @ modulo M, are
equivalent. Then we claim that the left regular representations of U
modulo M and U modulo M; are equivalent. Indeed by assumption
we have a C-linear map ¢:€/M;—C/M,. Let ¢(1+ M) =x-+ M, and
define ¢': U/ M{—U/M; by setting ¢'(u+M{)=ux+M{. It is
then readily checked that ¢’ establishes the required equivalence.

Finally assume (py, V1) and (p,, V3) are two irreducible representa-
tions of L such that there exists a linear functional AE3C* with
[0::X]>0 and the representations (7(p1, ), (V1)a) and (n(pz, N), (Va)r)
are equivalent. Choose nonzero elements 9;E(V,)x and define
M;= {cEG]'r](Pi, N(c)v;=0} for i=1, 2. Clearly M; is a maximal
left ideal in € and (n(pi, N), (V3))) is equivalent to the left regular
representation of € modulo M;. By assumption then the left regular
representations of € modulo M; and @ modulo M; are equivalent.
As above, this implies that the left regular representations of U
modulo M{ and U modulo M; are equivalent. Then, by the unique-
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ness of M! we have M! = {uE€ U|p:(w)v:=0} and (p,, V:) is equiva-
lent to the left regular representation of U modulo M/. Therefore
(p1, V1) is equivalent to (ps, V2). B

The result of Lemma 2 suggests a closer look at the irreducible
representations of €.

DEeFINITION 3. A nontrivial representation (y, W) of @ is said to be
N-weighted for some linear functional A& 3C* iff it is irreducible and
n(H—N(H)-1)=0 for all HE3C.

LemMA 3. Every N-weighted representation of C is equivalent to a
representation of the form (n(p, N), V) for some irreducible representa-
tion (o, V) of L with [p:\]>0.

Proor. Let (3, W) be a A-weighted representation of @ and select
a nonzero element w&EW. Set M = {cee|n(c)w=0}. Clearly M is a
maximal left ideal of €. Now we claim that the left regular represen-
tation of U modulo M’ (the unique maximal left ideal of U contain-
ing M) is the required irreducible representation. This follows im-
mediately on observing that M'N\e€= M. To prove this latter fact
we note that MC M’'MEC by definition of M’. Then take anyxE M'MNE
and assume x& M. By the maximality of M in @ there exists an ele-
ment yE € such that yx—1E M and hence 1€ M’. This contradic-
tion implies that M =M'Ne. [ ]

Finally combining the results of this section we have

THEOREM 1. For any fixed linear functional NEIC* there is a one-to-
one correspondence between the set of equivalence classes of irreducible
representations (p, V) of L with [p:N]>0 and the set of equivalence
classes of N-weighted representations of C.

2. Relations between weight spaces. Two natural questions now
arise:

(1) Suppose (p, V) is an irreducible representation of L such that
[0:M]>0 and [p:N;]>0 for two different linear functionals A,
A E35¢*. Then how are the representations 7(p, A1) and 5(p, N2) related?

(2) Conversely, let (9;, W;) be a N;-weighted representation of @
for 2=1, 2. If \;#N\,, under what conditions does there exist a common
irreducible representation (p, V) of L such that #; is equivalent to
7(p, \;) for i=1, 2?

Unfortunately we have been unable to provide a “@-internal”
answer to these questions; however, we do have the following straight-
forward result which we will use in the next section for somewhat
more satisfactory results in a restricted case.
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THEOREM 2. Let (9, W) be a N;-weighted representation of @ and
let M; denote a maximal left ideal of @ such that 3, is equivalent to the
left regular representation of @ modulo M; for i=1, 2. Then there exists
an irreducible representation (p, V) of L such that n; is equivalent to
(e, N\;) (=1, 2) iff there exists an element xS U— MJ such that
M{xCM;.

Proor. If there exists an element x& U— My such that M{xC M,
then the map ¢: U/ M{ —>U/M; defined by ¢(u+M{)=ux+MJ is
a linear isomorphism which establishes the equivalence between the
left regular representation of U modulo M{ and of U modulo M{.
Let (p, V) be any representation in this equivalence class; it is clear
that 75, is equivalent to 5(p, \;) of =1, 2.

Conversely if there exists an irreducible representation (o, V) of
L such that n; is equivalent to n(p, N\;) then M; can be considered to
be the left annihilator ideal of some nonzero element v;E V) —i.e.
M;= {cE(‘B|p(6)v¢=0}—for i1=1, 2. Moreover, as in §1 we have
M = {uE Ulp(u)v.:O} for ©=1, 2. Since p is assumped to be irre-
ducible there exists an element x& U such that p(x)v; =v; and hence
x&EM) and M{xC M. |

3. One-dimensional weight spaces. In the case of all finite-dimen-
sional irreducible representations or, more generally, all irreducible
representations (p, V) of L admitting a “highest weight”, it is well
known that there always exists at least one linear functional AE3C*
such that [p:A]=1. On the other hand, if (o, V) is an irreducible
representation of L for which there exists a linear functional A&3c*
with [p: N] =1 then, as above, p is determined by (p, \) and moreover
7(p, \) may be regarded as an algebra homomorphism from € into
K. This particular class of representations of L was studied by the
author in a previous paper [3]. Unfortunately, it is possible for in-
equivalent one-dimensional representations of € to yield equivalent
representations of L. The next two theorems are aimed at shedding
some light on the relationship between one-dimensional representa-
tions of € which yield equivalent representations of L.

THEOREM 3. Let (n;, K) be a N\-weighted one-dimensional representa-
tion of C for i =1, 2. If there exists an irreducible representation (p, V)
of L such that n; is equivalent to n(p, N;) for 1=1, 2 then there exist ele-
ments x, y& U such that yxEC, na(yx) =1 and n1(c) =n:(ycx) for all
cEQ.
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ProOF. Choose 0#2;E V. Then M;= {c€¢e|p(c)v;=0} is a maxi-
mal leftideal of €such thaty;isequivalent to the left regular representa-
tion of € modulo M;. By Theorem 2 there exists an element x& U
— M{ such that M{xC MJ. Since x& M; there exists an element
y&E U such that yx—1EM;. Then clearly yx&€ and n.(yx)=1.
Finally, since 72(y(c —m(c) - 1)x) =0, ni1(c) =n2(ycx) for all cEE. B

As a partial converse to Theorem 3 we have:

THEOREM 4. Let (3;, K) be a one-dimensional \;-weighted representa-
tion of C and denote Ker(n:) by M; for i=1, 2. If there exists an element
x&EU—MJ such that for all yE U satisfying yxEC we have n:(ycx)
=n1(c)n(yx) for all cEC then there exists an irreducible representation
(o, V) of L such that n; is equivalent to n(p, Ns) for 1=1, 2.

Proor. We first observe that the set
{uG UI (VyE U: yu € Cyu € M}

is a maximal left ideal of U containing M; and hence is equal to M{.

Let (w, U/ M{) denote the left regular representation of U modulo
M7 . For all cE€ we have cx=m1(c)x mod M3 . Suppose, to the con-
trary, that cx—nmi(c)x&E M7 . By maximality of MJ, there exists an
element y& U such that y(cx —m(c)x) —1E M —i.e. n2(yex —ni(c)yx)
=1. However, by assumption n;(ycx —mi(c)yx) =0. This contradic-
tion implies that cx—m(c)xE M4. Therefore 7 is equivalent to

n (7l', >\1) . .

4. Some interesting questions. Having established the close rela-
tionship between the representations of L and those of @, we are now
interested in looking at the irreducible representations of € and the
structure of €. In this regard we have far more questions than an-
swers. In previous papers [3], [4] we have shown that € is a finitely
generated subalgebra of U and if (3, W) is a finite-dimensional, \-
weighted representation of € then the associated irreducible repre-
sentation (p, V) of L has the property that [p:\]< ® for all \E3c*.

From these observed facts we face the following questions:

(1) Are all N-weighted (resp. irreducible) representations of €
finite-dimensional?

(2) Are all irreducible representations of € A-weighted for some
linear functional A€ 3e*?

(3) If (3, W) is a finite-dimensional Ap-weighted representation of
L, does there exist a linear functional N€3* such that [p:A\]=1?
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