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Let L denote a simple Lie algebra over an algebraically closed field

K of characteristic zero. Harish-Chandra [2] has shown that to each

one-dimensional representation (X, K) of the Cartan subalgebra 3C

of L we may associate an irreducible representation of L admitting X

as a "highest weight function". This has been generalized by the

author [3] by showing that if S is the centralizer of 3C in U, the uni-

versal enveloping algebra of L, and (7, K) is a one-dimensional

representation of C we may again construct an irreducible repre-

sentation of L admitting y j 3C as a weight function. In this paper we

make a further study of the relationship between the representations

of L and their weight spaces.

1. Weight spaces of irreducible representations. It is well known

that there exists a one-one correspondence between the representa-

tions of L and those of U which preserves irreducibility. Throughout

this paper we will not distinguish between a representation of L and

its unique extension to U.

Definition 1. Let (p, V) be a representation of L. Then for each

linear functional X£3C*, the dual linear space of the Cartan subal-

gebra, we define

Fx = {vE V\p(H)v = \(H)v (yn E 3d)}.

Also we denote by [p:X] the dimension of the subspace 7\. If, in

particular, [p:X] >0 we call X a weight function of the representation

p and V\ the corresponding weight space.

It is clear from the definitions of Q and 7\ that for any element

cEQ, p(c) maps V\ into V\.

Definition 2. Let (p, V) be a representation of L and X£3C*.

Then we define a representation (n(p, X), Fx) of C by setting r¡{p, X) (c)

=p(c)| 7x for all cGC.

Lemma 1. If (p, V) is an irreducible representation of L and X£3C*

such that [p:X]>0 then (rj(p, X), 7x) is a nontrivial, irreducible repre-

sentation of 6.
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Proof. It suffices to show that for an arbitrary nonzero element

»G V\ we have rj(p, X)(C)(i>) = V\, and this follows as a special case of

equation (2.4) in a paper by Bouwer [l].

We now observe that the representation r¡(p, X) determines p in the

following sense.

Lemma 2. Given two irreducible representations (pi, Vi) and (p2, V2)

of L such that there exists a linear functional XG3C* with [pi'.\] and

[p2:X] > 0 and r¡(pi, X) equivalent to ij(p2, X), then pi is equivalent to p2.

Proof. We first observe that if AT" is a maximal left ideal of Q then

there exists a unique maximal left ideal M' of U containing M. In

fact, if M" denotes the left ideal of U generated by J7 we can easily

see that M" ¿¿ U and hence the existence of M' is established by a

simple application of Zorn's Lemma. For the uniqueness it suffices

to show that the left regular representation (ir, U/M") of U modulo

M" has a unique maximal 7r(f/)-invariant subspace. Clearly U/M"

= ^2®(U/M")y and if IF is a x(i/)-invariant subspace of U/M" we

have W= T,®(Wr~\(U/M")y). Since (U/M")x is the representation

space of an irreducible representation of e it follows that W(~\

(U/M"\ = (U/M'\ or Wr\(U/M")x={0}. In the first case
l + M"EW and hence W= U/M". Therefore every proper ir(U)-

invariant subspace of U/M" is a subspace of X)T;¿x @ ( U/M")y

¥" U/M", and hence W„ the sum of all proper ir(i/)-invariant sub-

spaces of U/M", is the unique maximal proper 7r(i/)-invariant

subspace of U/M".

Next suppose Mi and M2 are two maximal left ideals of C such that

the left regular representations of C modulo Mi and 6 modulo M2 are

equivalent. Then we claim that the left regular representations of U

modulo M'i and U modulo M'2 are equivalent. Indeed by assumption

we have a C-linear map <p : e/Mi-+Q/M2. Let <p(l+Mi) =x + M2 and

define <p':U/M{-^U/M2' by setting (p'(u + Ml)=ux + Ml. It is
then readily checked that <¡>' establishes the required equivalence.

Finally assume (pi, Fi) and (p2, F2) are two irreducible representa-

tions of L such that there exists a linear functional XG3C* with

[p,:X] >0 and the representations (i?(pi, X), (Vi)\) and (»?(p2, ̂). (F2)x)

are equivalent. Choose nonzero elements z>iG(F,-)\ and define

Mi= {cEQ\v(pu X)(c)»< = 0} for * = 1, 2. Clearly Mi is a maximal

left ideal in C and 0?(p,-, X), (F,)x) is equivalent to the left regular

representation of Q modulo Mt. By assumption then the left regular

representations of Q modulo Mi and C modulo M2 are equivalent.

As above, this implies that the left regular representations of U

modulo Ml and U modulo Ml are equivalent. Then, by the unique-
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ness of Mí we have M¡ = {uEU\pi(u)vi = 0} and (p.-, 7.) is equiva-

lent to the left regular representation of U modulo Mi. Therefore

(pi. 7i) is equivalent to (p2, V2).

The result of Lemma 2 suggests a closer look at the irreducible

representations of C

Definition 3. A nontrivial representation (t), W) of Q is said to be

\-weighted for some linear functional X£3C* iff it is irreducible and

rj(H-\(H) -1)=0 for all HEX.

Lemma 3. Every \-weighted representation of 6 is equivalent to a

representation of the form (r)(p, X), V\) for some irreducible representa-

tion (p, V) of L with [p:X]>0.

Proof. Let (v, W) be a X-weighted representation of C and select

a nonzero element wE W. Set M= {c £ C177 (c) w = 0}. Clearly M is a

maximal left ideal of 6. Now we claim that the left regular represen-

tation of U modulo M' (the unique maximal left ideal of U contain-

ing M) is the required irreducible representation. This follows im-

mediately on observing that M'Í\Q = M. To prove this latter fact

we note that MQ M'C\ Q by definition of M'. Then take any x E MT\ Q

and assume x(JAf. By the maximality of M in C there exists an ele-

ment yE& such that yx — I EM and hence 1EM'. This contradic-

tion implies that M=MT\Q. gj

Finally combining the results of this section we have

Theorem 1. For any fixed linear functional XG3C* there is a one-to-

one correspondence between the set of equivalence classes of irreducible

representations (p, V) of L with [p:X]>0 and the set of equivalence

classes of \-weighted representations of Q.

2. Relations between weight spaces. Two natural questions now

arise:

(1) Suppose (p, 7) is an irreducible representation of L such that

[p:Xi]>0 and [p:X2]>0 for two different linear functionals Xi,

X2G3C*- Then how are the representations r¡(p, Xi) and r¡(p, X2) related?

(2) Conversely, let (t?¿, W¡) be a Xt-weighted representation of C

fori' = l, 2. If Xi 5^X2, under what conditions does there exist a common

irreducible representation (p, 7) of L such that r]i is equivalent to

r](p, X,-) for i=i, 2?

Unfortunately we have been unable to provide a "©-internal"

answer to these questions; however, we do have the following straight-

forward result which we will use in the next section for somewhat

more satisfactory results in a restricted case.
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Theorem 2. Let (77,-, Wt) be a \i-weighted representation of G and

let M, denote a maximal left ideal of Q such that r¡i is equivalent to the

left regular representation of Q modulo Mi for i = l, 2. Then there exists

an irreducible representation (p, V) of L such that 77,- is equivalent to

r¡ip, X¿) (î = 1, 2) iff there exists an element xEU—Ml such that

MlxQMl.

Proof. If there exists an element xG U — Ml such that MlxQM^

then the map <¡>: U/MI-+U/MI defined by <p(u + Ml) =ux + Ml is
a linear isomorphism which establishes the equivalence between the

left regular representation of U modulo Ml and of U modulo Ml.

Let (p, V) he any representation in this equivalence class; it is clear

that 77 ¿ is equivalent to 77 (p, X¿) of ¿= 1, 2.

Conversely if there exists an irreducible representation (p, V) of

L such that 77 ¿ is equivalent to r¡(p, X¿) then Mi can be considered to

be the left annihilator ideal of some nonzero element ViEV\¡—i.e.

Mi= {cE&\pic)vi = 0}—for * = 1, 2. Moreover, as in §1 we have

Mi = \uEU\p(u)vi — 0} for i=\, 2. Since p is assumped to be irre-

ducible there exists an element xG U such that p(x)v2 = vi and hence

x G Ml and Ml xQMl. ■

3. One-dimensional weight spaces. In the case of all finite-dimen-

sional irreducible representations or, more generally, all irreducible

representations (p, V) of L admitting a "highest weight", it is well

known that there always exists at least one linear functional XG3C*

such that [p:X] = l. On the other hand, if (p, V) is an irreducible

representation of L for which there exists a linear functional XG3C*

with [p: X] = 1 then, as above, p is determined by r)(p,\) and moreover

rjip, X) may be regarded as an algebra homomorphism from 6 into

K. This particular class of representations of L was studied by the

author in a previous paper [3]. Unfortunately, it is possible for in-

equivalent one-dimensional representations of 6 to yield equivalent

representations of L. The next two theorems are aimed at shedding

some light on the relationship between one-dimensional representa-

tions of 6 which yield equivalent representations of L.

Theorem 3. Let (77,-, K) be a \i-weighted one-dimensional representa-

tion of C for i—l, 2. If there exists an irreducible representation (p, V)

of L such that r\i is equivalent to r\ip, X,) for i = \, 2 then there exist ele-

ments x, yEU such that yxEQ, »72(yx) = l and 771(c) =n2(ycx) for all

cEQ-
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Proof. Choose 0=i»i£7xi. Then Mt- {c£e|p(c)î>, = 0} is a maxi-

mal left ideal of C such that^i is equivalent to the left regular representa-

tion of 6 modulo Mi. By Theorem 2 there exists an element xEU

— Mi such that M{xQM2. Since x£Af2' there exists an element

y EU such that yx — 1EM2. Then clearly yx£6 and 772(7*) = 1.

Finally, since r¡2(y(c— 771(c) • l)x) = 0,171(c) =rj2(ycx) for all cEQ-

As a partial converse to Theorem 3 we have:

Theorem 4. Let (77,-, K) be a one-dimensional \i-weighted representa-

tion of S and denote Kerfo,-) by Mi for i = 1, 2. If there exists an element

xEU—M{ such that for all y EU satisfying yx£C we have n2(ycx)

=Vi(c)r]î(yx) for all c£C then there exists an irreducible representation

(p> 7) of L such that rji is equivalent to rj(p, X,) for i = 1, 2.

Proof. We first observe that the set

{« £ UI (Vy £ t/: yw £ C)y« £ Jf«}

is a maximal left ideal of U containing M,• and hence is equal to Af/.

Let (ir, U/M2 ) denote the left regular representation of U modulo

M2. For all c£C we have cx = r¡i(c)x mod M2. Suppose, to the con-

trary, that ex— r¡i(c)xEM2. By maximality of M2 , there exists an

element y EU such that y(cx— 771 (c)x) —1£M2'—i.e. 772 (y ex— 771(c) yx)

= 1. However, by assumption ^(ycx—77i(c)yx) =0. This contradic-

tion implies that cx—r¡i(c)xEM2. Therefore 771 is equivalent to

77(tt, Xi). ■

4. Some interesting questions. Having established the close rela-

tionship between the representations of L and those of Q, we are now

interested in looking at the irreducible representations of 6 and the

structure of Q. In this regard we have far more questions than an-

swers. In previous papers [3], [4] we have shown that 6 is a finitely

generated subalgebra of U and if (77, IF) is a finite-dimensional, X-

weighted representation of 6 then the associated irreducible repre-

sentation (p, V) of L has the property that [p:X] < 00 for all X£3C*.

From these observed facts we face the following questions:

(1) Are all X-weighted (resp. irreducible) representations of 6

finite-dimensional?

(2) Are all irreducible representations of 6 X-weighted for some

linear functional X£3C*?

(3) If (77, W) is a finite-dimensional X0-weighted representation of

L, does there exist a linear functional X£3C* such that [p:X] = l?
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