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1. Introduction. It is known that the Abel method and the Borel

exponential method of summability are not equivalent, but that

under certain conditions, both methods sum the same series to the

same sum [5]. This was recently extended in one direction, to the

conditions under which a series summable by a Borel-type method is

also summable by the Abel method [7]. The object of this paper is

to extend this last result to absolute summability.

2. Definitions and generalities. Suppose throughout that <r, an

(« = 0, 1, • • • ) are arbitrary complex numbers, that a>0 and that

ß is real. Let N be any nonnegative integer greater than 1 —ß/a. Let

M denote a positive constant, not necessarily the same at each

occurrence.

Define

n

5„  =   23 ar\ S-i =  0; O-tf = O- — SN-i.
r-0

2.1. Definitions of the Borel-type methods of summability.

Define

"     anX"-4-"-1 "     snxan+ß-1

&(x) = y.-;    5(x) = y,-•
ntif T(an + ß) tí* Y(an + ß)

It is known [l] that the convergence of one of these series for all

x=0 implies the convergence of the other for all x = 0; henceforth it

is assumed that these series are convergent for all x^O.

Define S(x) =Sa,p(x) =ae~xs(x);A(x) = Jx0 e~'a(t)dt.

Note. Except in the lemma in §4, the suffixed form Sa,ß(x) will not

be used.

Ordinary summability [2]. If S(x)—xras;«;—><x>, then sn^a(B, a, ß).

If A(x)—wn as #—>», then sn—>a(B', a, ß).

Absolute summability [4]. If sn—xr(7?, a, ß) and S(x) is of

bounded variation with respect to x on the interval [0, ») then

5„—><r|75, a, ß\. If sn—*a(B', a, ß) and A(x) is of bounded variation

with respect to x on the interval [0, »), then 5„—><r| B', a, ß\.
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Note. The summability method (B, 1, 1) is the classical Borel

exponential method (B) and the method (B\ 1, 1), the classical Borel

integral method (B').

The actual choice of N is immaterial. Thus N will henceforth be

assumed to be sufficiently large so that 5(0) =0 and x1_"S'(x) is con-

tinuous for x = 0. Further, it may be assumed without loss of general-

ity that a0 = ai = • • • =aAr_i = 0, so that a^=a.

2.2. Definitions of the Abel methods of summability. Define

CO CO

L(x) = £ a„xn = (1 — x) £ snxn.

n—0 n—0

Ordinary summability [6, p. 7]. If P(x) = £T-o W" is convergent

for |x| <1 and P(x)—>a as x—»1 —, then sn—>o(A).

Absolute summability [8]. If sn—>a(A) and P(x) is of bounded

variation with respect to x on the interval [0, 1), then 5„—»a| A \.

3. Theorems for ordinary methods. In 1931, Doetsch [5] proved

the following theorem:

Theorem A. If 5„—>a(P) and L(x) = £^,0 anX" is convergent for

\x\ <1, then sn—*o-(A).

This was extended in 1961 by Jajte [7] to give

Theorem B. If s„-^cr(C, k)(B, a, ß) where 0 = ¿s;i, a«¿ P(x)

= £T=o anx" *s convergent for |x| <1, then sn—>o(A).

Note. (C, k)(B, a, ß) is the (P, a, ß) method applied to the (C, k)

mean of 5„ (the Cesaro mean of order k [6, p. 96]).

Since (G, 0) is convergence, the relation between the Borel-type

method and the Abel methods is expressed as

Corollary B. // 5„—>a(P, a, ß) and L(x) = £"_0 anXn is convergent

for \x\ <1, then sn-+cr(A).

Since it is known [3, Theorem 2] that sn-^>a(B, a, ß) if and only if

5n—>a(P', a, ß — 1), the following theorem is immediate:

Theorem 1. If 5„—>a(P', a, ß) and L(x) = £r=o(V is convergent

for \x\ <1, then sn—*o(A).

4. Theorems for absolute methods. In this section, Corollary B

and Theorem 1 are extended to absolute summability.

Theorem 2. If sn—>a|P, a, ß\ and P(x)= £T-oanxB *S convergent

for |x| <1, then sa—>a| A \.
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Proof. Because of Corollary B and since S(x), L(x) are absolutely

continuous on [o, »), [0, 1) respectively, it is sufficient for the proof

of Theorem 2 to prove that

/>  1 /» 00| 7/(0 | dt < »    whenever      I     | S'(t) \ dt < ».
o «'0

The following lemma is required:

Lemma. If sn-+o-\B, a, ß\ then sn—><r\B,a, ß+o\ whenever 8>0.

Proof. (Note. In this proof, the suffixed form Sa.ß(x) is used.) Since

it is known that sn—>a(B, a, ß + o) whenever sn—>a(B, a, ß) and 5>0

[3, Result II], it suffices to show that

| Sl,f¡+j(0 | dt < »    whenever      I     | S'a,ß(t) \ dt < ».
0 •' 0

Thus, since [4, Result I]

T(ô)S'a,„+0(t) = e~* f (t - u)~leS'a,ß(u)du,
J o

it follows that

r(S) f    | 5l,3+a(0 | dt = f   e-'dt f  (t - Uy-le"\ S'a,ß(u) | dw

e» | 5ljj(«) \du\    (t- uf-^e-'dt
0 v u

/I   00

|5lj,(«)|d« < ».
o

This completes the proof of the lemma.

The direct proof of Corollary B consists of taking the Laplace

transform of S(x) and knowing that whenever S(x)—»a as *—>»,

/i  CO

e-""5(«)du-*a-   as y-» 0+,
o

B(y) = (1 + y)t>- V--y--1 -► 1    as y -» 0+,

and L(x) =73(y)7(y) where * and y are related by 2c = (l+y)-a.

Note. This relation between x and y is assumed implicitly for the

remainder of this proof.
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First, note that

/I CO /»COe-«"S'(u)du    and   I'(y) = -  I    e-^uS'(u)du.
o J o

•'  0

In order to show that P(x) is of bounded variation with respect to

x on the interval [0, 1), it is sufficient to prove that

I d
\—B(y)I(y)  dy < ».
I ay

Now, note the following properties of B(y):

(i) P(y)->1 as y->0+.

(ii) B(y) is continuous for y>0.

(iii) B(y)~yP~l/a as y—>«>.

Also, for y>0

B'(y)       ß-a       1 a(l + y)«'1

B(y)      14- y      y      {(l + y)"-l}

ß-a      ay(l + y)"'1 - (1 + y)a + 1

"l+y    "      y{(l + y)a- 1}

Thus, P'(y) has the following properties:

(iv) 5'(y)->(2j8-a-l)/2asy-»0 + .

(v) B'(y) is continuous for y>0.

(vi) P'(y)~(ß — l)yß-2/cc as y—>=o.

In view of all these properties, since ß>l and since i1_"5'(/) is

continuous for t = 0, it now follows that

/I co /» 00 /* oo

I P'60/601 ¿y = I   üíy3-2^ |   «-*■ | S'(«) | du
1 «^ 1 ■* 0

/»CO /»COI 5'(«) I du I    yO-*e-**dy
o J i

= mÍ   m1-" I 5' (u) I d« < »,
J o

/»CO /»CO /»COI B(y)I'(y) \dy£  I    ify^-'ay j    w<r»» | S'(«) | du
1 «J 1 " 0

/I   CO f   CO«|5'(«)|d« I    y»-i(r»*dy
o J i

= M |    w1-" | S"(w) | dw < »,
«J o
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/>   1 /»  1 /• 00I B(y)I'(y) I dy =  I   Mdy J    ue~«a | S'(w) | dw
0 J 0 J 0

/»cu /• 1

w|S'(w)| dw I    e-wdy
0 " 0

/, 00

(1 - «-«) I S'(u) \du < »,
0

and

(d) f   I 5'(y)/(y) I dy < »
•J 0

since 73'(y) and 7(y) are bounded on [O, l].

Thus, it follows from (a), (b), (c) and (d), that

J"J 0
\—B(y)I(y)\dy

dy <

and this completes the proof of Theorem 2.

Since it is known that 5„—xr| B, a, ß\ il and only if 5„—><r| B', a, ß — 1 [

[4, Theorem 17], the following theorem follows immediately:

Theorem 3. If sn—*<r\ B', a, ß\ and L(x) = 23n-o anX" is convergent

for \x\ <1, then s„—*a\A\.
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