BASIS PRESERVING MAPS¹

WILLIAM J. DAVIS

The Paley-Wiener and Krein-Milman-Rutman theorems state that a sequence (y_i) in a *B*-space *X* which is sufficiently near a basic sequence (x_i) is itself a basic sequence, and that the linear extension of the map *T* defined by $Tx_i = y_i$ is an isomorphism of $[x_i]$ onto $[y_i]$ (see, e.g. [1], [6]). Here we examine some criteria for linear and nonlinear maps to preserve bases.

A sequence $(x_i) \subset X$ is equivalent to a sequence $(y_i) \subset Y$ if, for any sequence of scalars (a_i) , $\sum a_i x_i$ converges if and only if $\sum a_i y_i$ converges [2]. A sequence (y_i) is equivalent to a basic sequence (x_i) if and only if there is an isomorphism $T:[x_i] \to [y_i]$ ($[x_i] = \text{closed}$ span (x_i) , isomorphism = linear homeomorphism) such that $Tx_i = y_i$. As a result, (y_i) is also basic.

The Paley-Wiener theorem has an immediate corollary which we state here. In this paper, X and Y always denote B-spaces.

COROLLARY 1. Let $(x_i) \subset X$ be basic and let $(y_i) \subset Y$. Then (y_i) is equivalent to (x_i) if and only if there is an isomorphism $T: \operatorname{sp}(y_i) \to X$ and $\lambda \in (0, 1)$ such that for all finite sequences (a_i) of scalars,

$$\|\sum a_i(x_i-Ty_i)\| \leq \lambda \|\sum a_ix_i\|.$$

First, we remove the restrictions that T be a linear map and a homeomorphism, but retain equivalence. The results resemble somewhat the approximate solvability theorems of Kantorovich [4, p. 543]. The following lemmas are very simple, so the proofs will be omitted.

LEMMA 1. Let A be a linear subspace of X, $T:A \rightarrow Y$ be linear and $\phi: T(A) \rightarrow X$. Then T is one-to-one if $||I - \phi \circ T|| < 1$, where $I = I_A$.

LEMMA 2. If $T: A \rightarrow Y$ (with A as above) is a bounded linear map, then T is an isomorphism of A into Y if and only if there exists $f: T(A) \rightarrow X$, either bounded or continuous, such that $||I-f \circ T|| < 1$. If there exists m > 0 such that $||f(y)|| \ge m||y||$ for all $y \in T(A)$, boundedness of T is an unnecessary hypothesis.

This theorem is one generalization of the Paley-Wiener theorem which follows from the lemmas.

Received by the editors September 27, 1968.

¹ This work was supported by National Science Foundation grant number GP-6152.

THEOREM 1. Let (x_i) be basic in X and (y_i) a sequence in Y. Then (y_i) is equivalent to (x_i) if there exist positive constants m, M and λ with $\lambda \in (0, 1)$ and $(z_i) \subset X$ such that, for each finite sequence of scalars (a_i) , there exists a finite sequence of scalars (b_i) such that $\|\sum (a_i x_i - b_i z_i)\|$ $\leq \lambda \| \sum a_i x_i \|$ and $m \| \sum a_i y_i \| \leq \| \sum b_i z_i \| \leq M \| \sum a_i y_i \|$.

PROOF. Define $f:\operatorname{sp}(y_i) \to \operatorname{sp}(z_i)$ by $f(\sum a_i y_i) = \sum b_i z_i$ and apply Lemma 2.

In [6], Retherford proves a Paley-Wiener type theorem which does not yield equivalent sequences. It follows as a corollary to the next result.

THEOREM 2. Let (x_i) be basic in X and (y_i) a sequence in Y. Then (y_i) is basic if there is a map $F:\operatorname{sp}(y_i) \to \operatorname{sp}(x_i)$ and positive constants m and M such that either (a) and (b) or (a') hold.

- (a) $m||u|| \le ||F(u)|| \le M||u||$ for every $u \in \operatorname{sp}(y_i)$.
- (b) If $u = \sum_{i=1}^{p} a_i y_i$, there exists (b_i) such that for every $q \leq p$, $F(\sum_{i=1}^{q} a_i y_i) = \sum_{i=1}^{q} b_i x_i$. (a') If $S_n: [x_i] \rightarrow [x_i| i \leq n]$ is the natural projection, for every finite
- sequence $(a_i)_{i=1}^p$ and every $q \leq p$,

$$m \left\| \sum_{i=1}^{q} a_i y_i \right\| \leq \left\| S_q \left(F \left(\sum_{i=1}^{p} a_i y_i \right) \right) \right\| \leq M \left\| \sum_{i=1}^{q} a_i y_i \right\|.$$

Proof. In either case, the result follows from the inequalities

$$\left\| \left(\sum_{i=1}^{q} a_i y_i \right) \right\| \leq \frac{1}{m} \left\| S_q \left(F \left(\sum_{i=1}^{p} a_i y_i \right) \right) \right\|$$

$$\leq \frac{K}{m} \left\| F \left(\sum_{i=1}^{p} a_i y_i \right) \right\| \leq \frac{KM}{m} \left\| \sum_{i=1}^{p} a_i y_i \right\|$$

where $||S_n|| \le K$, since (y_i) is basic if and only if there exists C such that $\left\|\sum_{i=1}^{q} a_i y_i\right\| \le C \left\|\sum_{i=1}^{p} a_i y_i\right\|$ holds for all $q \le p$ and all (a_i) .

Retherford's theorem follows from (a').

The interesting point here is that for any pair of basic sequences, (x_i) and (y_i) , there is a map F satisfying (a) and (b).

PROPOSITION. Let (x_i) be basic in X and let (e_i) denote the natural basis of (1_1) . There is a map $F: [x_i] \rightarrow (1_1)$ satisfying (a) and (b) of Theorem 2.

PROOF. If $(f_k) \subset X^*$ is the sequence biorthogonal to (x_k) , let $S_n:[x_k] \to [x_k \mid k \le n]$ be the natural projection, i.e.

$$S_n(u) = \sum_{k=1}^n f_k(u) x_k.$$

Define a new norm on $[x_i]$ by

$$|x| = (\sup_n ||S_n(x)||) + \sum_{k=0}^{\infty} 2^{-k} |f_k(x)| ||x||.$$

If we set $A_n(x) = (\operatorname{sgn} f_n(x)) (|S_n(x)| - |S_{n-1}(x)|)$, and $F(x) = \sum A_n(x)e_n$, we have ||F(x)|| = |x|, as well as (b).

COROLLARY. If $(x_i) \subset X$ and $(y_i) \subset Y$ are basic sequences, there is a map $F:\operatorname{sp}(x_i) \to \operatorname{sp}(y_i)$ satisfying (a) and (b) of Theorem 2.

REMARK 1. In [3], Kadec constructs a homeomorphism between $[x_i]$ and $[y_i]$ with a very delicate refinement of maps similar to F of Theorem 2.

REMARK 2. Pełczynski has recently shown that there is always an isomorphism of $[x_i]$ into a universal space with basis (e_i) such that (x_i) is equivalent to (e_{k_i}) (if $0 < \inf ||x_i|| \le \sup ||x_i|| < \infty$), and $[e_{k_i}]$ is complemented in $[e_i]$, [5].

REMARK 3. If (M_i) is a sequence of closed subspaces of X such that each $x \in X$ can be expressed uniquely as $x = \sum u_i$, converging strongly and having $u_i \in M_i$ for each i, then (M_i) is called a *Schauder basis of subspaces* (SBOS) for X. In this paper, most of the results remain valid if the basic sequence (x_i) is replaced by sequences (u_i) with $u_i \in M_i$ for each i and (M_i) a SBOS of X. For example,

PROPOSITION. Let (M_i) be a SBOS of X and (y_i) a sequence in Y. Then (y_i) is basic if there exists a map $F: \operatorname{sp}(y_i) \to X$ and positive constants m and M such that $m||u|| \le ||F(u)|| \le M||u||$ for all $u \in \operatorname{sp}(y_i)$, and if for each $u = \sum_{i=1}^p a_i y_i$, there exists (z_i) in X with $z_i \in M_i$ for each i such that $q \le p$ implies $F(\sum_{i=1}^q a_i y_i) = \sum_{i=1}^q z_i$.

The proof is the same as that of Theorem 2 since (M_i) is a SBOS of $[M_i]$ if and only if there exists a constant C with $C \ge 1$ such that $\|\sum_{i=1}^q z_i\| \le C\|\sum_{i=1}^p z_i\|$ holds if $q \le p$ and $z_i \in M_i$ for each i (see, e.g. [6]).

REFERENCES

- 1. M. G. Arsove, The Paley-Wiener theorem in metric linear spaces, Pacific J. Math. 10 (1960), 365-379.
 - 2. S. Banach, Théorie des operationes lineaires, Chelsea, Warsaw, 1932.
- 3. M. I. Kadec, Topological equivalence of all separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23-25=Soviet Math. Dokl. 7 (1966), 319-322.
- 4. L. V. Kantorovich and G. P. Akilov, Functional analysis in normed spaces, Macmillan, New York, 1964.
 - 5. A. Pelczynski, Universal bases, (to appear).
- 6. J. R. Retherford, Basic sequences and the Paley-Wiener criterion, Pacific J. Math. 14 (1964), 1019-1027.

THE OHIO STATE UNIVERSITY