ON THE HAUSDORFF OPEN CONTINUOUS IMAGES OF HAUSDORFF PARACOMPACT p-SPACES

H. H. WICKE1

- 1. Introduction. Ponomarev proved the following remarkable theorem: Every T_0 first-countable space of infinite cardinality is an open continuous image of a zero-dimensional metrizable space of the same weight [8].² This theorem clearly and succinctly summarizes the behavior of metrizable spaces under open mappings. The purpose of this article is to prove an analogue of Ponomarev's theorem in a not necessarily first-countable situation and to develop some of its consequences. This analogue, Theorem 1 below, is a joint discovery of the author and Dr. J. M. Worrell, Jr. [10]. Remark 4 shows how a proof of Ponomarev's theorem may be derived from the proof of Theorem 1. Theorem 1 leads directly to a characterization (Theorem 2) of the class of Hausdorff open continuous images of Hausdorff paracompact p-spaces as the class of Hausdorff spaces of pointcountable type. The latter class generalizes the class of Hausdorff first-countable spaces. Both the concept of p-space and of space of point-countable type are due to Arhangel'skii [3], [4]. Theorem 3, a rather direct consequence of Theorem 1, answers a question of Arhangel'skii by generalizing a theorem of his to the Hausdorff case. A relation between Theorem 1, which involves single-valued mappings, and Theorem 3, which involves many-valued mappings, is pointed out in Remark 3.
- 2. **Terminology.** The general terminology used here is much like that of [7], one exception being that spaces called *compact* in [7] are here called *bicompact*. The usage of [7] in letting X ambiguously denote the topological space (X, 3) is followed where convenient, and *product space* refers to a Cartesian product of spaces endowed with the product topology [7]. A base for X means a base for the topology of X. The letter X denotes the set of positive integers and if X is a set, X (X) denotes the cardinal number of X. The weight [2] of a topological space X is defined as the smallest cardinal num-

Presented to the Society, April 19, 1969 under the title On a problem of Arhangel'skii; received by the editors June 24, 1968.

¹ This work was supported by the United States Atomic Energy Commission.

² Ponomarev does not point out that infinite cardinality is required. In fact, if S is a finite T_0 but not T_1 space any T_1 open continuous preimage of S has infinite weight and cardinality. In Theorem 1 infinite cardinality is not required since the spaces here are assumed to be T_2 .

ber m such that 3 has a base of cardinal m. A mapping $f: X \rightarrow Y$ is called perfect [1] if and only if it is closed, continuous, and $f^{-1}(y)$ is bicompact for all $y \in Y$. If α is a collection of sets then $St(x, \alpha)$ denotes $\bigcup \{A \in \alpha: x \in A\}$. A T_1 -space X is called a p-space [3] if and only if there exists a sequence g_1, g_2, \cdots of collections of open subsets of the Wallman bicompactification ωX of X covering X such that if $x \in X$, $\bigcap \{St(x, g_n): n \in N\} \subset X$. If X is a Tychonoff space this definition is equivalent to one in which βX (the Stone-Čech bicompactification of X) replaces ωX . A principal theorem for p-spaces, suggestive of the naturality of their use in Theorem 1, is that of Arhangel'skii: A T_2 -space is a paracompact p-space if and only if there exists a perfect mapping of it onto a metrizable space [3, Theorem 5.1].

3. **Theorems.** If (X, 5) is a space and $A \subset X$, a subcollection \mathfrak{D} of \mathfrak{I} whose members include A is called a *base at* A if and only if for every $U \in \mathfrak{I}$ such that $U \supset A$, there exists $D \in \mathfrak{D}$ such that $A \subset D \subset U$.

If X is a space and $A \subset X$, then A is said to be of *countable character* [4] if and only if there exists a countable base at A.

A space X is said to be of *point-countable type* [4] if and only if X is covered by a collection of bicompact subspaces of countable character.

REMARK 1. Any first-countable space is of point-countable type. REMARK 2. The property of being of point-countable type is preserved by open continuous mappings.

The following lemma was stated by Arhangel'skiĭ [5, p. 158]. A proof is sketched here for completeness.

LEMMA 1. A Tychonoff p-space is of point-countable type.

PROOF. Every point of such a space X lies in a bicompact subset of X which is a G_{δ} -set in βX and every such set has countable character.

LEMMA 2. In a Hausdorff space X the following properties are equivalent:

- (i) X is of point-countable type.
- (ii) If U is open in X and $x \in U$ there exists a bicompact set B of countable character such that $x \in B \subset U$.

PROOF. Clearly (ii) implies (i). Suppose $x \in U$ and U is open. There exists a bicompact set B of countable character containing x. Let $\{U_k : k \in N\}$ be a base at B such that $U_{k+1} \subset U_k$ for all $k \in N$. Then since X is Hausdorff $B = \bigcap \{\overline{U}_k : k \in N\}$. Let $V_1 = U$. Suppose open sets V_1, \dots, V_n have been defined such that $x \in V_k \subset U_k \cap V_{k-1}$ and \overline{V}_k is disjoint from $B \sim V_{k-1}$ for $1 < k \le n$. Since $B \sim V_n$ is bicompact, $x \in V_n$ and X is T_2 , there exists an open set V such that $x \in V \subset \overline{V} \subset X$ $\sim (B \sim V_n)$. Let $V_{n+1} = V \cap V_n \cap U_{n+1}$. Thus there exists a sequence

 $\{V_n\}$ such that for all $n \in N$, $x \in V_{n+1} \subset V_n \cap U_{n+1}$ and \overline{V}_{n+1} is disjoint from $B \sim V_n$. Let $C = \bigcap \{\overline{V}_n : n \in N\}$. Then C is a closed (therefore bicompact) subset of B containing x. Since $\overline{V}_{n+1} \subset (X \sim B) \cup V_n$, $C = \bigcap \{V_n : n \in N\}$ and $C \subset U$. Suppose W is open and $C \subset W$. If no $V_n \subset W$, there exists a sequence $\{x_k\}$ such that each $x_k \in V_k \sim W$. Since $\bigcap \{\overline{V}_k \sim W : k \in N\} = \emptyset$ and B is bicompact, there exists n such that $\overline{V}_k \sim W \subset X \sim B$ for all $k \geq n$. Let $A = \{x_k : k \geq n\}$. Then $\overline{A} \subset X \sim W$ and $\overline{A} \cap B \neq \emptyset$. For if $B \subset X \sim \overline{A}$, then for some $k \geq n$, $U_k \subset X \sim \overline{A} \subset X \sim A$ contradicting $x_k \in A$. If $y \in \overline{A} \cap B$, $y \in \overline{V}_k \sim W$ for all $k \in N$, again a contradiction. Hence some $V_n \subset W$, so that C has countable character.

THEOREM 1. Suppose X is a Hausdorff space of point-countable type. Then X is the range of an open continuous mapping ϕ such that: (1) The domain Y of ϕ is a Hausdorff paracompact p-space. (2) The weight of Y is the weight of X. (3) Y is a subspace of the product space of a zero-dimensional metrizable space and X.

Proof. See §4.

COMMENT. For Tychonoff spaces, part (1) can be derived from [4, Theorem 3.14] by the method of Remark 3 below.

THEOREM 2. A Hausdorff space is of point-countable type if and only if it is an open continuous image of a Hausdorff paracompact p-space.

PROOF. This follows from Theorem 1, Lemma 1, and Remark 2.

Recall that a many-valued mapping $f: X \to Y$ is called *continuous* (from above) [9] if and only if for every $x \in X$ if $V \subset Y$ is open and $fx \subset V$ there exists an open $U \subset X$ such that $x \in U$ and $f(U) \subset V$. The mapping f is called range-bicompact (or Y-bicompact [9]) if and only if fx is bicompact for every $x \in X$. Arhangel'skil proved the following theorem with the additional hypothesis that X is a Tychonoff space [4, Theorem 3.14] and asked [4, p. 54] whether it is valid for a wider class of spaces.

THEOREM 3. Suppose X is a Hausdorff space. Then X is of point-countable type if and only if X is the range of an open continuous (possibly many-valued) range-bicompact mapping of a metrizable space.

PROOF. By Theorem 1, there exists a continuous mapping ϕ of a T_2 paracompact p-space Y onto X. By Arhangel'skii's theorem (see §2) there exists a perfect mapping θ of Y onto a metrizable space M. It is straightforward to show that $\phi \circ \theta^{-1}$ is an open continuous range-bicompact mapping of M onto X. The sufficiency follows from [4, Proposition 3.6].

REMARK 3. Theorem 3 can be used to derive part (1) of Theorem 1. For if f is an open continuous many-valued range-bicompact mapping of a metrizable space X onto a Hausdorff space Y of point-countable type, let $Z = \{(x, y) \in X \times Y : y \in fx\}$, under the topology induced by the product topology. The set Z is called the graph of f by Ponomarev [9]. If θ and ϕ denote the projections of Z onto X and Y respectively, then it may be seen that $f = \phi$ o θ^{-1} where ϕ is open and continuous and θ is perfect. (This statement may be proved in a fashion similar to that used by Ponomarev in showing that a perfect mapping f factors into ϕ o θ^{-1} where θ and ϕ are perfect [9, Theorem 1, §2].) Hence Z is a paracompact p-space by Arhangel'skii's theorem and ϕ maps Z onto Y.

4. Proof of Theorem 1.

PROOF. Assume $\aleph(X)$ is infinite. Let $\mathfrak C$ denote $\{B \subset X : B \text{ is bicompact and of countable character}\}$. For some base $\mathfrak W$ of X such that weight of $X = \aleph(\mathfrak W)$, let $\mathfrak T$ denote the collection of all unions of finite subcollections of $\mathfrak W$. Then $\aleph(\mathfrak T) = \text{weight of } X \text{ and } \mathfrak W \subset \mathfrak T$. Call a sequence α admissible if and only if for each $n \in \mathbb N$: (1) $\alpha(n) \in \mathfrak T$; (2) $\alpha(n+1) \subset \alpha(n)$; (3) for some $B \in \mathfrak C$, $B = \bigcap \{\alpha(k) : k \in \mathbb N\}$ and $\{\alpha(k) : k \in \mathbb N\}$ is a base at B. Using bicompactness it may be seen that for each $B \in \mathfrak C$ there exists an admissible sequence α satisfying (3) with respect to B.

Consider $\mathfrak F$ as a topological space with the discrete topology and let Δ denote the product space of countably many copies of $\mathfrak F$. Let $\Gamma = \{\alpha \in \Delta : \alpha \text{ is admissible}\}$. Then Γ is a metrizable zero-dimensional space (it is a subspace of a Baire space [6]). Let $\Gamma \times X$ denote the product space of Γ and X and let

$$Y = \{(\alpha, x) \in \Gamma \times X : x \in \bigcap \{\alpha(k) : k \in N\}\},\$$

with the topology induced by the product topology. Note that Y is Hausdorff. Let $\theta = \pi_1 | Y$ and $\phi = \pi_2 | Y$, where π_i denotes projection onto the *i*th coordinate. Then θ and ϕ are continuous mappings of Y onto Γ and X respectively.

If $\alpha \in \Gamma$, let $S(\alpha \mid n) = \{\alpha' \in \Gamma : \alpha'(k) = \alpha(k), k = 1, \dots, n\}$. Then $\{S(\alpha \mid n) : n \in \mathbb{N} \text{ and } \alpha \in \Gamma\}$ is a base for Γ . For $\alpha \in \Gamma$ and $V \in \mathfrak{F}$ such that $V \subset \alpha(n)$ let $D(\alpha \mid n; V)$ denote $(S(\alpha \mid n) \times V) \cap Y$. Then $\mathfrak{B} = \{D(\alpha \mid n; V) : \alpha \in \Gamma, n \in \mathbb{N}, V \in \mathfrak{F}, \text{ and } V \subset \alpha(n)\}$ is a base for Y. Since $\Re(\mathfrak{F}) = \text{weight of } X$, $\Re(\mathfrak{B}) = \text{weight of } X$.

Suppose $\alpha \in \Gamma$, $V \in \mathfrak{F}$, and $V \subset \alpha(n)$. Then clearly $\phi[D(\alpha \mid n; V)] \subset V$. If $x \in V$, then by Lemma 2 there exists $B \in \mathfrak{C}$ such that $x \in B \subset V$. Let $\beta \in \Gamma$ be such that $\{\beta(k) : k \in N\}$ is a base at B. There exists k such that $\beta(k) \subset V$. The sequence α' such that $\alpha'(j) = \alpha(j)$, $1 \le j \le n$

and $\alpha'(j) = \beta(k+j)$ for j > n is admissible and $(\alpha', x) \in D(\alpha \mid n; V)$. Hence $\phi[D(\alpha \mid n; V)] = V$. Therefore ϕ is an open mapping.

If it is shown that θ is a perfect mapping, then by Arhangel'skii's theorem cited in §2, Y is a paracompact p-space. Suppose $\alpha \in \Gamma$ and $B = \bigcap \{\alpha(k) : k \in N\}$. Then, since B is bicompact, $\theta^{-1}(\alpha) = \{\alpha\} \times B$ is bicompact. Hence θ is a bicompact mapping. To show that θ is closed suppose W is open in Y and $\theta^{-1}(\alpha) \subset W$. There exist $m \in N$ and sets $D_k = D(\alpha_k \mid n(k); V_k) \in \mathbb{G}$ intersecting $\theta^{-1}(\alpha)$ for $k = 1, \dots, m$, such that $\theta^{-1}(\alpha) \subset \bigcup \{D_k : k \leq m\} \subset W$. Since $\theta^{-1}(\alpha)$ meets each D_k , $\alpha_k(j) = \alpha(j)$, $1 \leq j \leq n(k)$, $1 \leq k \leq m$. Also $B \subset \bigcup \{V_k : k \leq m\}$. By conditions (2) and (3) on admissible sequences there exists $n \geq \max\{n(k) : k \leq m\}$ such that $B \subset \alpha(n) \subset \bigcup \{V_k : k \leq m\}$. If $(\alpha', x) \in D = D(\alpha \mid n; \alpha(n))$, then $x \in V_k$ for some k, and therefore $(\alpha', x) \in D_k \subset W$. Hence $\theta^{-1}(\alpha) \subset D \subset W$. Since any $\theta^{-1}(\alpha')$ intersecting D is a subset of D, $D = \theta^{-1}\theta(D)$. It follows that θ is a closed mapping.

REMARK 4. If the space X is T_0 and first-countable, then $\mathfrak C$ in the above proof can be taken as the collection $\{\{x\}:x\in X\}$. Then each admissible sequence α is such that $\bigcap \{\alpha(k):k\in N\}=\{x\}$ for some $x\in X$. It follows that Y is homeomorphic to Γ and thus X is an open continuous image of Γ . This proves Ponomarev's theorem.

REFERENCES

- 1. P. S. Aleksandrov (= P. S. Alexandroff), On certain results in the theory of topological spaces obtained in the last twenty-five years, Uspehi Mat. Nauk 15 (1960), No. 2(92), 25-95 = Russian Math. Surveys 15 (1960), No. 2, 23-83.
- 2. P. S. Aleksandrov and P. S. Uryson (= P. S. Urysohn), Mémoire sur les espaces topologiques compacts, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. I 14, No. 1 (1929), 1-96.
- 3. A. V. Arhangel'skii, On a class of spaces containing all metric and all locally bicompact spaces, Mat. Sb. 67 (1965), 55-85. (Russian)
- 4. ——, Bicompact sets and the topology of spaces, Trudy Moskov. Mat. Obšč. 13 (1965), 3-55 = Trans. Moscow Math. Soc. 1965, 1-62.
- 5. ——, Mappings and spaces, Uspehi Mat. Nauk. 21 (1966), No. 4(130), 133-184 = Russian Math. Surveys 21 (1966), No. 4, 115-162.
 - 6. F. Hausdorff, Mengenlehre, 3rd ed., Gruyter, Berlin-Leipzig, 1935.
 - 7. J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955.
- 8. V. I. Ponomarev, Axioms of countability and continuous mappings, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 8 (1960), 127-133. (Russian)
- 9. ——, Properties of topological spaces preserved under multivalued continuous mappings, Mat. Sb. 51(93) (1960), 515-537; English transl., Amer. Math. Soc. Transl. (2)38 (1964), 119-140.
- 10. J. M. Worrell, Jr. and H. H. Wicke, Concerning a class of completely regular spaces described by Arhangel'skii, Notices Amer. Math. Soc. 15 (1968), 352.

SANDIA LABORATORIES, ALBUQUERQUE, NEW MEXICO