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1. Introduction. Ponomarev proved the following remarkable

theorem: Every To first-countable space of infinite cardinality is an

open continuous image of a zero-dimensional metrizable space of the

same weight [8].2 This theorem clearly and succinctly summarizes the

behavior of metrizable spaces under open mappings. The purpose of

this article is to prove an analogue of Ponomarev's theorem in a not

necessarily first-countable situation and to develop some of its con-

sequences. This analogue, Theorem 1 below, is a joint discovery of

the author and Dr. J. M. Worrell, Jr. [lO]. Remark 4 shows how a

proof of Ponomarev's theorem may be derived from the proof of

Theorem 1. Theorem 1 leads directly to a characterization (Theorem

2) of the class of Hausdorff open continuous images of Hausdorff

paracompact p-spaces as the class of Hausdorff spaces of point-

countable type. The latter class generalizes the class of Hausdorff

first-countable spaces. Both the concept of p-space and of space of

point-countable type are due to Arhangel'skiï [3], [4]. Theorem 3, a

rather direct consequence of Theorem 1, answers a question of

Arhangel'skiï by generalizing a theorem of his to the Hausdorff case.

A relation between Theorem 1, which involves single-valued mappings,

and Theorem 3, which involves many-valued mappings, is pointed

out in Remark 3.

2. Terminology. The general terminology used here is much like

that of [7], one exception being that spaces called compact in [7] are

here called bicompact. The usage of [7] in letting X ambiguously

denote the topological space (X, 3) is followed where convenient,

and product space refers to a Cartesian product of spaces endowed

with the product topology [7]. A base for X means a base for the

topology of X. The letter N denotes the set of positive integers and

if A is a set, bî(A) denotes the cardinal number of A. The weight [2]

of a topological space (X, 3) is defined as the smallest cardinal num-
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ber m such that 3 has a base of cardinal m. A mapping /: X—>• Y is

called perfect [l] if and only if it is closed, continuous, and/_1(y) is

bicompact for all yE Y. If ft is a collection of sets then St(x, ft) de-

notes U {^4£ft: xEA }. A 7\-space X is called a p-space [3] if and

only if there exists a sequence 9i, 9s> ' ' ' °f collections of open sub-

sets of the Wallman bicompactification uX of X covering X such

that if xEX, fi {St(x, 9„) : »£iV} C-X". If X is a Tychonoff space this
definition is equivalent to one in which ßX (the Stone-Cech bicom-

pactification of X) replaces aX. A principal theorem for p-spaces,

suggestive of the naturality of their use in Theorem 1, is that of

Arhangel'skiï : A T^-space is a paracompact p-space if and only if there

exists a perfect mapping of it onto a metrizable space [3, Theorem 5.1].

3. Theorems. If (X, 3) is a space and AQX, a subcollection D

of 3 whose members include A is called a base at A if and only if for

every i/£3 such that UZ)A, there exists £>££> such that A CDC U.

If X is a space and A CX, then A is said to be of countable character

[4] if and only if there exists a countable base at A.

A space X is said to be of point-countable type [4] if and only if X

is covered by a collection of bicompact subspaces of countable

character.

Remark 1. Any first-countable space is of point-countable type.

Remark 2. The property of being of point-countable type is pre-

served by open continuous mappings.

The following lemma was stated by Arhangel'skiï [5, p. 158]. A

proof is sketched here for completeness.

Lemma 1. A Tychonoff p-space is of point-countable type.

Proof. Every point of such a space X lies in a bicompact subset of

X which is a tr¿-set in ßX and every such set has countable character.

Lemma 2. Ina Hausdorff space X the following properties are equiva-

lent:

(i) X is of point-countable type.

(ii) If U is open in X and xEU there exists a bicompact set B of

countable character such that xEBCU.

Proof. Clearly (ii) implies (i). Suppose xE U and U is open. There

exists a bicompact set B of countable character containing x. Let

{ Uk: kEN} be a base at B such that Uk+iCUk for all kEN. Then
since X is Hausdorff 5 = 0 {Uk: kEN}. Let Vi=U. Suppose open

sets Vi, • • • , Vn have been defined such that x£ VkC UkC\ F*_i and

Vk is disjoint from B~Vk-i for i<k = n. Since B~Vn is bicompact,

xE Vn and X is T¡, there exists an open set V such that xE VC VCX

~(B~Vn). Let Vn+i = Vr\VnC\Un+i- Thus there exists a sequence
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{ Vn} such that for all m G N, xG Vn+iQ ^n^ Un+i and Fn+1 is disjoint

from B~Vn. Let C = V\{Vn:nEN\. Then C is a closed (therefore

bicompact) subset of B containing x. Since F„+iC(^~5)UF„, C

= r\{Vn:nEN} and CEU. Suppose W is open and CC.W. If no
VnC.W, there exists a sequence {x*} such that each XkEVk^W.

Since O { Vk~W: kEN] = 0 and 5 is bicompact, there exists n such

that tk~WCX~B for all fee». Let A=\xk:k^n}. Then JOT
~IT and AC\B^0. For if £C^~¿, then for some k^n, UkQX

~AEX~A contradicting xjtG^4- If yEAC\B, yEVk~W for all
kEN, again a contradiction. Hence some VnEW, so that C has

countable character.

Theorem 1. Suppose X is a Hausdorff space of point-countable type.

Then X is the range of an open continuous mapping <p such that: (1)

The domain Y of (pis a Hausdorff paracompact p-space. (2) The weight

of Y is the weight of X. (3) Y is a subspace of the product space of a zero-

dimensional metrizable space and X.

Proof. See §4.

Comment. For Tychonoff spaces, part (1) can be derived from

[4, Theorem 3.14] by the method of Remark 3 below.

Theorem 2. A Hausdorff space is of point-countable type if and only

if it is an open continuous image of a Hausdorff paracompact p-space.

Proof. This follows from Theorem 1, Lemma 1, and Remark 2.

Recall that a many-valued mapping/: .X"—» Y is called continuous

(from above) [9] if and only if for every xEX if FC Y is open and

/xC V there exists an open UQX such that xG U and/(i/)C V. The

mapping/ is called range-bicompact (or Y-bicompact [9]) if and only

if fx is bicompact for every xEX. Arhangel'skiï proved the following

theorem with the additional hypothesis that X is a Tychonoff space

[4, Theorem 3.14] and asked [4, p. 54] whether it is valid for a wider

class of spaces.

Theorem 3. Suppose X is a Hausdorff space. Then X is of point-

countable type if and only if X is the range of an open continuous (pos-

sibly many-valued) range-bicompact mapping of a metrizable space.

Proof. By Theorem 1, there exists a continuous mapping <p of a T<¡

paracompact ¿»-space Y onto X. By Arhangel'skh's theorem (see §2)

there exists a perfect mapping 6 of F onto a metrizable space M. It is

straightforward to show that <p o d~l is an open continuous range-

bicompact mapping of M onto X. The sufficiency follows from [4,

Proposition 3.6].
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Remark 3. Theorem 3 can be used to derive part (1) of Theorem 1.

For if/ is an open continuous many-valued range-bicompact mapping

of a metrizable space X onto a Hausdorff space Y of point-countable

type, let Z= {(x, y)EXX Y: yEfx}, under the topology induced by

the product topology. The set Z is called the graph of / by Pono-

marev [9]. If 6 and (f> denote the projections of Z onto X and Y re-

spectively, then it may be seen that/=0 o0_1 where <£ is open and

continuous and 6 is perfect. (This statement may be proved in a

fashion similar to that used by Ponomarev in showing that a perfect

mapping / factors into </> o 6~l where 6 and 0 are perfect [9, Theorem

1, §2].) Hence Z is a paracompact /»-space by Arhangel'skiï's

theorem and 0 maps Z onto Y.

4. Proof of Theorem 1.

Proof. Assume \&(X) is infinite. Let C denote {BCX: B is bi-

compact and of countable character}. For some base V? of X such

that weight of X = R(V?), let 3: denote the collection of all unions of

finite subcollections of *W. Then Nfó) = weight of X and WCÍF. Call

a sequence a admissible if and only if for each w£7V: (1) a(w)£ï;

(2) a(n + l)Ca(n); (3) for some ££C, B = Cl {a(k): kEN] and

{a(k): kEN} is a base at B. Using bicompactness it may be seen

that for each BEG there exists an admissible sequence a satisfying

(3) with respect to B.

Consider Í as a topological space with the discrete topology

and let A denote the product space of countably many copies of

SF. Let r={o;£A:o! is admissible). Then T is a metrizable zero-

dimensional space (it is a subspace of a Baire space [6]). Let

TXX denote the product space of T and X and let

Y = {(a, x) ET X X :xEn{a(k):kEN}},

with the topology induced by the product topology. Note that Y is

Hausdorff. Let 0 = 7Ti| Y and 0=7r2| Y, where t,- denotes projection

onto the ith coordinate. Then 8 and <j> are continuous mappings of Y

onto T and X respectively.

If a£r, let S(a\n) = \a'ET:a'(k)=a(k), £ = 1, ••-,»}. Then
{S(a\ n): »£7V and a£r} is a base for T. For a£r and F£3r such

that VCa(n) let D(a\n; V) denote (S(a | n) X V) C\ Y. Then (B

= {D(a\n; V):aET, nEN, VE3, and VCa(n)} is a base for F.
Since N(00 = weight of X, N ((B) = weight of X.

Suppose a£r, F£3r, and VCa(n). Then clearly <£[D(o:|m; F)]

CF. If xEV, then by Lemma 2 there exists 5£e such that xEB

CF. Let ßEY be such that {/3(e): kEN} is a base at B. There exists &
such that ß(k)CV. The sequence a' such that a'(j)=ct(j), l^j^n
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and cc'(j)=ß(k-\-j) for j>n is admissible and (a', x)ED(a\n; V).

Hence 0[Z?(a| n; V)\ = V. Therefore (¡> is an open mapping.

If it is shown that 0 is a perfect mapping, then by Arhangel'skiï's

theorem cited in §2, F is a paracompact p-space. Suppose aET1 and

B = r\{a(k):kEN}. Then, since B is bicompact, 6-1(a) = {a}xB is

bicompact. Hence 6 is a bicompact mapping. To show that 8 is closed

suppose W is open in Y and 6~l(a)EW. There exist mEN and sets

Dic = D(c<k\ n(k); F*)G® intersecting 0_1(a) for k = l, • • • , m, such

that 6-1(a)E^{Dk:kèm}CW. Since d~l(a) meets each Dk, ak(j)

= a(j), iujún(k), í^k^m. Also 2*CU { Vk: Bm}. By conditions

(2) and (3) on admissible sequences there exists n^max{n(k): k^m)

such that 5Ca(»)CU{7*; ¿^m}. If (a', x)G-D = .D(a| »; a(w)),
then xGF* for some k, and therefore (a', x)EDkEW. Hence B~l(a)

CD C W. Since any fl-^a') intersecting D is a subset of D, D = fl-^Z)).

It follows that 0 is a closed mapping.

Remark 4. If the space X is T0 and first-countable, then 6 in the

above proof can be taken as the collection { jx} : xG-^}- Then each

admissible sequence a is such that C\[a(k): kEN} = {x} for some

xEX. It follows that Y is homeomorphic to T and thus X is an open

continuous image of T. This proves Ponomarev's theorem.
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