A NOTE ON WALLMAN SPACES
ALAN ZAME

In [3] Orrin Frink introduced the notion of a Wallman compacti-
fication of a Tychonoff space. A. K. and E. F. Steiner [6] have re-
cently shown that any compact metric space (or product of compact
metric spaces) is a Wallman compactification of each of its dense
subspaces. Their result is an immediate consequence of earlier work
and a theorem they proved about the existence of a certain kind of
base of closed sets in a compact metric space. The purpose of this
note is to give a different proof of this latter result, obtaining as a
consequence a slightly stronger version.

DEFINITION. Let X be a Tychonoff space. A family Z of closed
subsets of X is said to be a regular normal base for X if Z is a base
for the closed subsets of X, if each member of Z is a regular set (the
closure of its interior) and if

(i) Z is closed under finite unions and intersections; (i.e., Z is a
ring)

(ii) if *EX, F a closed subset of X, x& F, then there exists ZEZ
such that x€ZCX\F;
and

(iii) if 4, BEZ, ANB=¢ then there exists C, DEZ such that

ACX\C, BCX\D and (X\C)N (X\D) = &.

If X is a compact metric space, then (ii) and (iii) will hold for Z if
Z is a base for closed sets and is a ring.
Our result is the following

THEOREM. Let X be a compact metric space and let & be any countable
ring of regular closed subsets of X. Then there is a regular normal base Z
for X such that Z2 ®.

We notice that the result may fail if ®& is not countable. For
instance, let X =[0, 1], ® = { [0, @]:0<a=<1}. Then any closed set
not containing 0 must intersect some member of & in a single point
and ® can not be extended to a normal base for X.

Proor oF THE THEOREM. From now on, let X be a compact metric
space. Let I=[0, 1] and let P= ]2, I. We may assume that X CP.
If pEP we will write p=(p1, 2, * + * ).

Let Z+ denote the set of positive integers. Let & denote the set of
all functions whose domains are subsets of Z+ and whose ranges are
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contained in I. (For convenience, we will also include the “function”
Y whose domain is empty.) If a is such a function then ]al will denote
the domain of & and #|a| the number of elements in || if it is finite.
If @ and B are such that |a| N || = &, then by a\/8 we will mean the
function whose domain is |a@|\U|B| and which is defined in the ob-
vious manner. We will also identify points in P with functions in &
whose domains are Z*. If €% and #|a| =n, we will write |«|
= {&1, G,y v ¢ - ,&n} where ;1 <a; < - + - <@

Let 8 denote the set of all finite sequences of *+1. If sES, then #s
will denote the length of 5. Let «€F with #|a| =7 and sES$ with
#s=n. The quadrant Q(e, s) determined by « and s is defined by
(where s=(s3, * + +, $a))

Qa,s) = {y € P: siya; > sje(@;) forl1 S5 =< n}.

If o is the sequence of length 0, then by the above definition, or by
convention, Q(Y, o) =P.

Let «€F with |a| finite. Then & is admissible for a closed subset B
of P if for every BESF, |a|N|B] =, |a|U|B| =2+ such that
a\/BEB and for every neighborhood N (relative to P) of a\/# and
every s&8§ with #s=#la| we have BOANNQ(a, s)# . Notice that
¥ is admissible.

The basic result is the following:

LEMMA. Let a ©F be admissible for B. Let k¢t |a| be a fived positive
integer. Then the set of BEF with | B| = {k} such that a\/B is not admis-
sible for B is countable. In particular, the set of a with #[ al =1 which
are not admissible for B is countable.

We will now show that the lemma implies our theorem. Let & be a
countable regular ring. By induction and the use of our lemma applied
to X and the members of ® we may prove the existence of countable
sets Dy, Dy, + - +, D,, - - - such that

(i) for each j, D;CF and if a&D; then la[ = {]} ;

(ii) {a(i):aEDj} is dense in I for each j;

(iii) if aEDy,V + - + /Dy, (nin; if 17#5) then o is admissible for
X and for each BE®.

For each j we may write D;=D/\UD/’ where D/ \D/' = & and both
{a(j): «€ED!} and {[3(7'):6€D,” } are dense in I. Let @;
={[e(j), B()]:aED},BED}" }. Let

®, = {HEﬁE:'=’ (= o, »)

ij=1

for all but finitely many j and E; = ®; for the remaining j} .
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Let ®; consist of all finite unions of members of ®; and let Z = the ring
generated by ® U {ENX: EE Ry} . That Z is a normal base for X fol-
lows easily from the density of {a(j):aeD/ } and {B(j):BED,” } for
all j. That the members of Z are regular follows from the admissibility
ofalla&D,\V - - - VD,, for X and for all BE® and the fact that if
A and B are regular and AMB is regular in B then ANB is regular.

We now turn to the proof of the lemma. Let o be admissible and
let k& |a| be a positive integer. Suppose #Ial =n. Let ¢>0, s&S§
with #s=n-+1 and an integer m = max (a,, k) be fixed. For simplicity
of notation, assume that the sequence s is indexed with the elements
of |a|\U{k} in increasing order. Let § be the sequence s with the
term s, (under this new labelling) deleted, and assume that s;=+1.
For u€P let

e

Cu={yEP: |u¢—y;| <e,i=1,2,~-,m}.

Suppose there exists BEF with | 8| = {k} such that

(i) there exists YEF with |v|N(Ja|U{k})=g and |a|U{k}
U|'y| =Z7*, such that p=aVVBVYEB, and

(ii) BNC;NQ(aVB, s)=J.

We claim that the set of such 3 is finite. This will show that the num-
ber of 8 such that a\/B is not admissible is countable. Suppose 8’ #f
is such that there exists 4’ as in (i) such that p'=a\/B’'\V/v’ satisfies
(i) and (ii) above. We claim that CY*N\CY*=&. This will clearly
prove the result.

Suppose that ¢g&CY*NCY*. Assume that B(k)>p'(k). Then
|B(k) —gx| <e/4 and |B’'(k) —gi| <e/4 so that |B(k)—B' (k)| <e/2.
Let 6=8(k)—p’(k). Then 0<d6<e/2. Since « is admissible, there
exists yEBNQ(a, 5)NC:. We claim that rEBNCSNQ(a\V ', s), in
contradiction of (ii) above, thus proving the result. Certainly r&B.
Furthermore, since 7EQ(e, §) and ]rk—B(k)l <é= |B(k) B (k)| we
certainly have that 7, >’(k) so that rEQ(a\/f, s). Finally, to show
that r & Cy we have to show that |r,~—p,’ | <efor j=1, ..., m. But
|r,-—p,-| <4 and

| pi—0l] S |pi—gitgi—pl] <e/t+e/a=e/2

so the result follows by the triangle inequality.
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