A NOTE ON WALLMAN SPACES

ALAN ZAME

In [3] Orrin Frink introduced the notion of a Wallman compactification of a Tychonoff space. A. K. and E. F. Steiner [6] have recently shown that any compact metric space (or product of compact metric spaces) is a Wallman compactification of each of its dense subspaces. Their result is an immediate consequence of earlier work and a theorem they proved about the existence of a certain kind of base of closed sets in a compact metric space. The purpose of this note is to give a different proof of this latter result, obtaining as a consequence a slightly stronger version.

DEFINITION. Let X be a Tychonoff space. A family Z of closed subsets of X is said to be a regular normal base for X if Z is a base for the closed subsets of X, if each member of Z is a regular set (the closure of its interior) and if

- (i) Z is closed under finite unions and intersections; (i.e., Z is a ring)
- (ii) if $x \in X$, F a closed subset of X, $x \notin F$, then there exists $Z \in \mathbb{Z}$ such that $x \in Z \subset X \setminus F$; and
 - (iii) if A, $B \in \mathbb{Z}$, $A \cap B = \emptyset$ then there exists C, $D \in \mathbb{Z}$ such that $A \subset X \setminus C$, $B \subset X \setminus D$ and $(X \setminus C) \cap (X \setminus D) = \emptyset$.

If X is a compact metric space, then (ii) and (iii) will hold for Z if Z is a base for closed sets and is a ring.

Our result is the following

THEOREM. Let X be a compact metric space and let $\mathfrak R$ be any countable ring of regular closed subsets of X. Then there is a regular normal base Z for X such that $Z \supseteq \mathfrak R$.

We notice that the result may fail if \mathfrak{R} is not countable. For instance, let X = [0, 1], $\mathfrak{R} = \{[0, \alpha]: 0 < \alpha \le 1\}$. Then any closed set not containing 0 must intersect some member of \mathfrak{R} in a single point and \mathfrak{R} can not be extended to a normal base for X.

PROOF OF THE THEOREM. From now on, let X be a compact metric space. Let I = [0, 1] and let $P = \prod_{i=1}^{\infty} I$. We may assume that $X \subset P$. If $p \in P$ we will write $p = (p_1, p_2, \cdots)$.

Let Z^+ denote the set of positive integers. Let \mathcal{F} denote the set of all functions whose domains are subsets of Z^+ and whose ranges are

Received by the editors July 19, 1968.

contained in I. (For convenience, we will also include the "function" ψ whose domain is empty.) If α is such a function then $|\alpha|$ will denote the domain of α and $\#|\alpha|$ the number of elements in $|\alpha|$ if it is finite. If α and β are such that $|\alpha| \cap |\beta| = \emptyset$, then by $\alpha \vee \beta$ we will mean the function whose domain is $|\alpha| \cup |\beta|$ and which is defined in the obvious manner. We will also identify points in P with functions in $\mathfrak F$ whose domains are Z^+ . If $\alpha \in \mathfrak F$ and $\#|\alpha| = n$, we will write $|\alpha| = \{\overline{\alpha}_1, \overline{\alpha}_2, \cdots, \overline{\alpha}_n\}$ where $\overline{\alpha}_1 < \overline{\alpha}_2 < \cdots < \overline{\alpha}_n$.

Let S denote the set of all finite sequences of ± 1 . If $s \in S$, then #s will denote the length of s. Let $\alpha \in \mathcal{F}$ with $\#|\alpha| = n$ and $s \in S$ with #s = n. The quadrant $Q(\alpha, s)$ determined by α and s is defined by (where $s = (s_1, \dots, s_n)$)

$$Q(\alpha, s) = \{ y \in P : s_j y_{\bar{\alpha}_j} > s_j \alpha(\bar{\alpha}_j) \text{ for } 1 \leq j \leq n \}.$$

If σ is the sequence of length 0, then by the above definition, or by convention, $Q(\psi, \sigma) = P$.

Let $\alpha \in \mathfrak{F}$ with $|\alpha|$ finite. Then α is admissible for a closed subset B of P if for every $\beta \in \mathfrak{F}$, $|\alpha| \cap |\beta| = \emptyset$, $|\alpha| \cup |\beta| = Z^+$ such that $\alpha \vee \beta \in B$ and for every neighborhood N (relative to P) of $\alpha \vee \beta$ and every $s \in \mathfrak{S}$ with $\#s = \#|\alpha|$ we have $B \cap N \cap Q(\alpha, s) \neq \emptyset$. Notice that ψ is admissible.

The basic result is the following:

LEMMA. Let $\alpha \in \mathfrak{F}$ be admissible for B. Let $k \in |\alpha|$ be a fixed positive integer. Then the set of $\beta \in \mathfrak{F}$ with $|\beta| = \{k\}$ such that $\alpha \vee \beta$ is not admissible for B is countable. In particular, the set of α with $\#|\alpha| = 1$ which are not admissible for B is countable.

We will now show that the lemma implies our theorem. Let \mathfrak{R} be a countable regular ring. By induction and the use of our lemma applied to X and the members of \mathfrak{R} we may prove the existence of countable sets $D_1, D_2, \dots, D_n, \dots$ such that

- (i) for each j, $D_j \subset \mathcal{F}$ and if $\alpha \in D_j$ then $|\alpha| = \{j\}$;
- (ii) $\{\alpha(j): \alpha \in D_j\}$ is dense in I for each j;
- (iii) if $\alpha \in D_{n_1} \vee \cdots \vee D_{n_k}$ $(n_i \neq n_j \text{ if } i \neq j)$ then α is admissible for X and for each $B \in \mathfrak{R}$.

For each j we may write $D_j = D_j' \cup D_j''$ where $D_j' \cap D_j'' = \emptyset$ and both $\{\alpha(j): \alpha \in D_j'\}$ and $\{\beta(j): \beta \in D_j''\}$ are dense in I. Let $\mathfrak{R}_j = \{[\alpha(j), \beta(j)]: \alpha \in D_j', \beta \in D_j''\}$. Let

$$\mathfrak{R}_1 = \left\{ \prod_{i=1}^{\infty} E_i : E_i = (-\infty, \infty) \right\}$$

for all but finitely many j and $E_j = \Re_j$ for the remaining j.

Let $\widetilde{\mathfrak{A}}_2$ consist of all finite unions of members of $\widetilde{\mathfrak{A}}_1$ and let Z = the ring generated by $\mathfrak{A} \cup \{E \cap X : E \in \widetilde{\mathfrak{A}}_{22}\}$. That Z is a normal base for X follows easily from the density of $\{\alpha(j) : \alpha \in D_j'\}$ and $\{\beta(j) : \beta \in D_j''\}$ for all j. That the members of Z are regular follows from the admissibility of all $\alpha \in D_{n_1} \vee \cdots \vee D_{n_k}$ for X and for all $B \in \mathfrak{A}$ and the fact that if A and B are regular and $A \cap B$ is regular in B then $A \cap B$ is regular.

We now turn to the proof of the lemma. Let α be admissible and let $k \in |\alpha|$ be a positive integer. Suppose $\#|\alpha| = n$. Let e > 0, $s \in \mathbb{S}$ with #s = n + 1 and an integer $m \ge \max(\bar{\alpha}_n, k)$ be fixed. For simplicity of notation, assume that the sequence s is indexed with the elements of $|\alpha| \cup \{k\}$ in increasing order. Let \bar{s} be the sequence s with the term s_k (under this new labelling) deleted, and assume that $s_k = +1$. For $u \in P$ let

$$C_u^e = \{ y \in P : |u_i - y_i| < e, i = 1, 2, \dots, m \}.$$

Suppose there exists $\beta \in \mathfrak{F}$ with $|\beta| = \{k\}$ such that

(i) there exists $\gamma \in \mathfrak{T}$ with $|\gamma| \cap (|\alpha| \cup \{k\}) = \emptyset$ and $|\alpha| \cup \{k\}$ $\cup |\gamma| = Z^+$, such that $p = \alpha \vee \beta \vee \gamma \in B$, and

(ii) $B \cap C_p^e \cap Q(\alpha \vee \beta, s) = \emptyset$.

We claim that the set of such β is finite. This will show that the number of β such that $\alpha \vee \beta$ is not admissible is countable. Suppose $\beta' \neq \beta$ is such that there exists γ' as in (i) such that $p' = \alpha \vee \beta' \vee \gamma'$ satisfies (i) and (ii) above. We claim that $C_p^{e/4} \cap C_p^{e/4} = \emptyset$. This will clearly prove the result.

Suppose that $q \in C_p^{e/4} \cap C_p^{e/4}$. Assume that $\beta(k) > \beta'(k)$. Then $|\beta(k) - q_k| < e/4$ and $|\beta'(k) - q_k| < e/4$ so that $|\beta(k) - \beta'(k)| < e/2$. Let $\delta = \beta(k) - \beta'(k)$. Then $0 < \delta < e/2$. Since α is admissible, there exists $r \in B \cap Q(\alpha, \bar{s}) \cap C_p^{\delta}$. We claim that $r \in B \cap C_p^{e/2} \cap Q(\alpha \vee \beta', s)$, in contradiction of (ii) above, thus proving the result. Certainly $r \in B$. Furthermore, since $r \in Q(\alpha, \bar{s})$ and $|r_k - \beta(k)| < \delta = |\beta(k) - \beta'(k)|$ we certainly have that $r_k > \beta'(k)$ so that $r \in Q(\alpha \vee \beta', s)$. Finally, to show that $r \in C_p^{e/2}$ we have to show that $|r_j - p_j'| < e$ for $j = 1, \dots, m$. But $|r_j - p_j| < \delta$ and

$$|p_{i}-p'_{i}| \leq |p_{i}-q_{i}+q_{i}-p'_{i}| < e/4 + e/4 = e/2,$$

so the result follows by the triangle inequality.

REFERENCES

1. Richard A. Alo and H. L. Shapiro, A note on compactifications and semi-normal spaces, Austral. J. Math. 8 (1968), 104-114.

- 2. ——, Normal bases and compactifications, Math. Ann. 175 (1968), 337-340.
- 3. Orrin Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 602-607.
- 4. E. F. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1968), 295-303.
- 5. A. K. and E. F. Steiner, Wallman and Z-compactifications, Duke Math. J. 35 (1968), 269-276.
- 6. ——, Products of compact metric spaces are regular Wallman, Indag. Math. (to appear).

University of Miami