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In [3] Orrin Frink introduced the notion of a Wallman compacti-

fication of a Tychonoff space. A. K. and E. F. Steiner [ó] have re-

cently shown that any compact metric space (or product of compact

metric spaces) is a Wallman compactification of each of its dense

subspaces. Their result is an immediate consequence of earlier work

and a theorem they proved about the existence of a certain kind of

base of closed sets in a compact metric space. The purpose of this

note is to give a different proof of this latter result, obtaining as a

consequence a slightly stronger version.

Definition. Let X be a Tychonoff space. A family Z of closed

subsets of X is said to be a regular normal base for X if Z is a base

for the closed subsets of X, if each member of Z is a regular set (the

closure of its interior) and if

(i) Z is closed under finite unions and intersections; (i.e., Z is a

ring)

(ii) if xEX, F a closed subset of X, x($:F, then there exists Z£Z

such that xEZCX\F;
and

(iii) if A, BEZ, AC\B = & then there exists C, D£Z such that

A C X\C,   B C X\D   and   (X\C) i\ (X\D) = 0.

If X is a compact metric space, then (ii) and (iii) will hold for Z if

Z is a base for closed sets and is a ring.

Our result is the following

Theorem. Let Xbea compact metric space and let <R be any countable

ring of regular closed subsets of X. Then there is a regular normal base Z

for X such that Z2 (ft.

We notice that the result may fail if (ft is not countable. For

instance, let X= [O, l], (R= { [O, a]:0<a^l}. Then any closed set

not containing 0 must intersect some member of öl in a single point

and (ft can not be extended to a normal base for X.

Proof of the Theorem. From now on, let X be a compact metric

space. Let J= [O, l] and let P = IJi=i ?• We may assume that XCP-

If pEP we will write p = (pi, pi, • • • ).
Let Z+ denote the set of positive integers. Let 'S denote the set of

all functions whose domains are subsets of Z+ and whose ranges are
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contained in I. (For convenience, we will also include the "function"

\¡/ whose domain is empty.) If a is such a function then \a\ will denote

the domain of a and #| a\ the number of elements in | a\ if it is finite.

If a and ß are such that | a | C\ | ß | = 0, then by a\/ß we will mean the

function whose domain is |a| W| ß\ and which is defined in the ob-

vious manner. We will also identify points in P with functions in SF

whose domains are Z+. If aE'S and §\a\ =n, we will write |a|

= {äi, 52, • • • , an} where 5i<52< • • • <ä„.

Let S denote the set of all finite sequences of ±1. If sE§, then #s

will denote the length of s. Let aGi with #\a\ =n and sE& with

§s = n. The quadrant Q(a, s) determined by a and s is defined by

(where 5 = (su ■ ■ ■ , s„))

Q(a, s) = {y E P: s^ > J;a(äy)    for 1 £j g »}.

If <x is the sequence of length 0, then by the above definition, or by

convention, Q(\¡/, a) =P.

Let aÇi with | a\ finite. Then a is admissible for a closed subset B

of P if for every ßE5, \a\r\\ß\=0, |a|U|j8|=Z+ such that
ct\/ßEB and for every neighborhood N (relative to P) of a\/ß and

every ¿G§ with #5 = #| a:| we have Br\NÍ^Q(a, s)¿¿0. Notice that

\¡/ is admissible.

The basic result is the following:

Lemma. Let aE$ be admissible for B. Let k(£ \ a\ be a fixed positive

integer. Then the set of ßE% with \ß\ = {k} such thata\/ß is not admis-

sible for B is countable. In particular, the set of a with f\oc\ =1 which

are not admissible for B is countable.

We will now show that the lemma implies our theorem. Let (Kbea

countable regular ring. By induction and the use of our lemma applied

to X and the members of (R we may prove the existence of countable

sets D\, Di, • • • , Dn, • • •  such that

(i) for each/, DjC$ and if aEDj then \a\ = {j} ;

(ii)   {a(j):aEDj} is dense in I for each/;

(iii) ifaG-DniV " ' * V-Dn* (ni7¿nj if i^j) then a is admissible for

X and for each BE®--
For each j we may write Dj = Dj \JD¡' where DJ HD/' = 0 and both
{aij):aED¡} and {ß(j)-ßED}'} are dense in J. Let <Rj

= {[«(/), ßU)]■ ocEDj, ßEDj'}. Let

«i= III £,:£,= (- », »)
.1

for all but finitely many/ and Ej = (R,- for the remaining/)- .
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Let (R2 consist of all finite unions of members of (Ri and let Z = the ring

generated by (ftW {EC\X : E £ (R22}. That Z is a normal base for X fol-

lows easily from the density of \a(j) :«££>/ } and \ß(j):ßEDj' } for

all j. That the members of Z are regular follows from the admissibility

of all a£Z?„,V ■ ■ ■ VDnk for X and for all B £ (ft and the fact that if

A and B are regular and AC\B is regular in B then AC\B is regular.

We now turn to the proof of the lemma. Let a be admissible and

let ¿(JEI«! be a positive integer. Suppose #|a| =«. Let e>0, s£S

with #s = »-f-l and an integer m = max (a„, £) be fixed. For simplicity

of notation, assume that the sequence 5 is indexed with the elements

of |a|U{è} in increasing order. Let í be the sequence s with the

term sk (under this new labelling) deleted, and assume that sk= +Í.

For uEP let

C« = {yEP'-  \ui — yA  < e, i = 1, 2, • • • ,m\.

Suppose there existsßE$ with \ß\ = \k} such that

(i) there exists 7£CF with | -v | n(]a| W{&}) = 0 and |a|U{&}

U|7| =Z+, such that p=a\/ß\/yEB, and
(ii) BC\Cevr\Q(ayß,s)=0.

We claim that the set of such ß is finite. This will show that the num-

ber of ß such that a\/ß is not admissible is countable. Suppose ß' ¥-ß

is such that there exists 7' as in (i) such thatp' = a\/ß'\/y' satisfies

(i) and (ii) above. We claim that Q/4HQ{4 = 0. This will clearly

prove the result.

Suppose that qECfl^C^*. Assume that ß(k)>ß'(k). Then

\ß(k)-qk\<e/4: and \ß'(k) -qk\ <e/A so that \ß(k) -ß'(k)\ <e/2.

Let 5=ß(k)—ß'(k). Then 0<5<e/2. Since a is admissible, there

exists rEBC\Q(a, s)r\Csp. We claim that rEBnCep>i~\Q(a\/ß', s), in

contradiction of (ii) above, thus proving the result. Certainly rEB.

Furthermore, since rEQ(cc, s) and |r*— ß(k)\ <8=\ß(k)—ß'(k)\ we

certainly have that rk>ß'(k) so that rEQ(a\/ß', s). Finally, to show

that rECeP' we have to show that | r,— p¡ \ <e for j = 1, • • • , m. But

] r>—pyI <S and

I Pi -Pl\   =1 Pi - Ii + 9i -Pi'\   < e/i + e/4 = e/2,

so the result follows by the triangle inequality.
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