LEBESGUE CHARACTERIZATIONS OF UNIFORMITY-
DIMENSION FUNCTIONS

JAMES C. SMITH, JR.

1. Introduction. Let (X, p) be a metric space, let dim(X) be the
covering dimension of X, and let do(X, p) be the metric dimension
of X. Let d; and d; denote the metric-dependent dimension functions
introduced by Nagami and Roberts [7], and let ds and d; be the
metric-dependent dimension functions introduced by Smith [9].
Characterizations of some of these metric-dependent dimension func-
tions in terms of Lebesgue covers have been given by Egorov [1],
Wilkinson [11] and Smith [9]. These results are described by the
following table.

Metric-dependent L.
dimension function Characterization
dy(X, p)=n Every Lebesgue cover consisting of #-2 members
has an open refinement of order <n+1
d;(X, p)<n Every finite Lebesgue cover has an open refine-
ment of order n+1
de(X, p)<n Every countable Lebesgue cover has an open refine-
ment of order =n-+1
di(X, p)=n Every locally finite Lebesgue cover has an open
refinement of order =n-+1
do(X, p)=n Every Lebesgue cover has an open refinement of
order =n+1

Soniat [10] has generalized the dimension functions do, d» and ds
for uniform spaces and obtained Lebesgue-type characterizations for
ds and do. In this paper we complete the above characterization table
for uniform spaces. In §2 we develop Lebesgue cover properties for
uniform spaces and characterize ds. In §§3 and 4 we generalize the
dimension functions d¢ and dr to uniform spaces and characterize
them in terms of Lebesgue covers.

DEFINITION. Let X be a set and D= {Dy:NEA4} be a family of
collections of subsets of X. For each A€ 4, let Dy={D.:aC 4, }.
Then

A {5))‘} = {ﬂ Dyoy: M) € A, N E A}.

A€A
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DEeFINITION. Throughout this paper J will denote the set
{1, 2,---, n+1} and J'=JU{n+2}, where the integer n will
always be understood.

2. Characterization of d. for uniform spaces. The reader is referred
to the papers by Nagami and Roberts [7], Smith [9], and Soniat
[10] for the definitions of the dimension functions dy, ds, d3, ds and d;
and the generalizations of do, d2, and d; to uniform spaces.

DEeFINITION 2.1. Let C and C’ be subsets of a uniform space (X,
U). We say that C and C’ are separated provided there exists UEU
such that (CXCNU=. If e={Cq, C.:a€A} is a family of
pairs (C., C.), then @ is called uniformly separated if there exists
UEU such that (C.XC)NU= for allaE 4.

DEFINITION 2.2. A cover D of a uniform space (X, U) is called
Lebesgue if there exists UE&U such that {U(x):xEX } refines D.

DEFINITION 2.3. A cover D= {Da:aEA} of a uniform space (X,
U) is called U-shrinkable if there exists some UEU and a cover
F={F.:a€A} such that

(1) F.CD, for all aE A.

(2) {Foy X—Do:aE€AY} is uniformly separated by U.

THEOREM 2.4. A cover D of a uniform space (X, W) is Lebesgue if
and only if D is U-shrinkable.

Proor (Necessity). Let D= {D,,,:aGA} be a Lebesgue cover of
(X, ). Then there exists UEU such that {U (x):xE€EX} refines .
Choose V& such that V is symmetric and V2CU. Define F,
={x: V@)X —-D.) =} for aEA.

(i) We assert that {F,,:aEA} covers X. Clearly F,CD, for all
aEA. Let x€D,— F,. Then since {U(x):xEX} refines D, there
exists B&A such that V(x) CU(x) CDgs. Hence V(x)N\(X —Dg) =&
so that x& Fy.

(ii) We now assert that {Fa, X—D,:a€EA } is uniformly separated
by V. Suppose there exists some € A4 such that [FgX (X —Dg) |V
#“ . Let (x, y)E[FsX (X —Dg)JN\V. Then xE F;, yEX —Dg and
XEV(y) and yEV(x). But xE Fs implies V(x)N\[X —Dg]= so
y& V(x), a contradiction.

REMARK. It should be noted at this point that the cover F=
{Fa:aEA} defined above is Lebesgue. If xEX, then there exists
BEA such that xEU(x)CDs. Clearly x&EFg and we assert that
Vix)C Fs. Let yE V(x) and 2E& V(y), so that (x, y) EV and (y,2) EV.
Hence (x, 2) € V2C U and therefore 2& U(x) CDg. It now follows that
V()N (X —Dg) = & and y& Fs. Thus V{(x) CF;.
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(Sufficiency). Suppose D= {D.,:aEA} is U-shrinkable to §F=
{Fa:a€A}, where {F., X—D.:a€A} is uniformly separated by
symmetric UEU. Let xEX. Since § is a cover of X, there exists B&€ 4
such that xE Fs. Let yE U(x) so that (x, y)&E U. But

UN[FX (X - Dy =&

and hence y&§X—Ds. Thus yEDg and U(x) CDs. Therefore
{U(x):x€X} refines D and D is Lebesgue.

For normal uniform spaces (X, U) Soniat has shown the following
[10, Theorem 3.8].

TraEOREM 2.5. Let (X, U) be a normal uniform space. Then
do(X, W) =n if and only if for every uniformly separated collection
{Ci, CluaeTg } of closed sets, there exists a closed collection {B;:iEJ }
such that B; separates C; and C! and Ny Bi=&.

Note. Here the separating sets B; are subsets of X and separate C;
and C{ in the usual sense and are not to be confused with elements of
the uniformity .

The next theorem now follows directly from [9, Theorem 2.3]
where the Lebesgue covers are now in the uniformity sense rather
than the metric sense.

THEOREM 2.6. Let (X, U) be a completely normal uniform space.
Then do(X, W) =n if and only if for every collection { fDi:iEJ} of n+1
binary Lebesgue covers of X, the cover D=NMA;c;D; of X has an open
refinement of order =n-+1.

We now obtain a Lebesque characterization of (X, U) analogous to
[9, Theorem 2.4].

THEOREM 2.7. Let (X, U) be a completely normal uniform space.
Then do(X, W) Snif and only if every Lebesgue cover D= {Dl, Dy, - - -,
D,,+2} of X consisting of n+2 members has an open refinement of order
=n+1.

Proor (Necessity). Suppose do(X, U)=#n, and let D= {Dl, D,,

:, D,.+2} be a Lebesgue cover of X. Then there exists U& U such
that {U(x):xEX} refines ®. By Theorem 2.4 above we can uni-
formly shrink D to a closed Lebesgue cover §= {F,, Fy -, F,,+2}
such that F;CD;for i€ J'. Then for each i€ J, D;={D;, X —F;} isa
binary Lebesgue cover of X. By Theorem 2.6 above D*= A;c;D;
has an open refinement ®** such that ord(D**)<n+1. But D*
refines D since §F covers X. Hence D** is the desired open cover.
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(Sufhiciency). Let {C.-, Ci/ueJ } be a collection of #+1 pairs of
closed sets which are uniformly separated by U&U. Choose K and
V symmetric in U such that KCK*CVCV?CU. Now define
%={K(x):x€X} and U={V(x):xEX}. Define for each i€J,
D;=St(C;, V) and H;= [St(C;, %) ]~ where St(C;, ) is the star of C;
with respect to the cover V. Let D,2=X — U;esH;. Clearly D= {D;,
Dy, - -, D,,_,.z} is an open Lebesgue cover of X. Hence D has an open
refinement ® = { Ra:a €4} such that the ord(®) £#+1. Define f to
be the function, f: A—J’, such that

fla) = {smallest integer 4 € J' such that R, C D; }

Now define Ri= U{R,:f(a)=14} for each {€J’. Hence ®={R,
R, « -, Roys} may replace {R,:a€A4}. Choose K*€a such that
(K*)*CK and define

%"= {K'(x): s€ X}, Ei={x:2ECss& R,
Si=St(E:;, %), R:=R;\US; fori€J, and Rz = Ruse.

Now SiN\D, 2= & ; for x €S; implies that x ESt(E;, &*) CSt(C;, K)
CH; so that x§D,,.. Hence ®*= {R;", Ry, -+, Ry} is an open
cover of X such that ord (R*)<xn+41 and C.CR* for & J.
Since ®* is finite there exists by [5, Lemma 1.5] a closed cover
F={Fy, F, + -, Fay} of X such that C;CF:CR¥ for i€J, and
Fo2CRY2. X normal implies that there exist open sets 0; such that
F,’CO,'CﬁjCR,* for ‘LE] Define B;=6i~0.‘ for 16] Clearly Bi is a
closed set separating C; and C; for :€J. We assert Nic;Bi= .
Suppose there exists x& N;esB;. Then x & F; for each :&€J. Hence
% E Fp2CRY2. But xER¥ for all i€ J and hence x& Niey/R¥*. This
is a contradiction since ord(®*) <#+-1. Hence d.(X, U) Zn.

3. The uniformity dimension function ds

DEeFINITION 3.1. Let (X, U) be a uniform space. If X = &, ds(X, U)
= —1. Otherwise d¢(X, U)=n if (X, U) satisfies this condition:

(Dg) Given any countable collection of closed pairs {C;, Ci:i=1,
2, - - -} such that

1) {C,, Clii=1,2, - } is uniformly separated,

2) {X-Clu=1,2,--- } is locally finite,
then there exist closed sets B; separating C; and C/ such that
ord {Biii=1,2,---}=n.

THEOREM 3.2. Let (X, U) be a paracompact uniform space. Then
de(X, W) =n if and only if every countable, locally finite Lebesgue cover
of X has an open refinement of order=n+-1.
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Proor. The proof is essentially the same proof as that of [9,
Theorem 3.2].

THEOREM 3.3. Let (X, U) be a uniform space. Then every countable
Lebesgue cover of X has a countable locally finite Lebesgue refinement.

PrOOF. Let D= {D;, Dy, - - - } be a Lebesgue cover of X. Then
there exists UEU such that {U x):xeX } refines D. Choose V and
K symmetric in U such that KCKACVCV2CU and define F;=
{x: VE&)N[X —D:]=} for all i. As before §={F;1i=1,2, - - -}
is a Lebesgue cover of X. Now let

R; = D; — U [St(F;, ®)]-, where & = {K(x): x € X}.
j<i
Clearly ® = {Ry, R,, - - - } refines ® in a 1—1 manner. We assert
that ® is a locally finite Lebesgue cover of X.

(i) Let x€X. Choose the smallest 7 such that x&E[St(F;, X)]~
Then xED;— U;«[St(F;, ®)]-=R; and hence R covers X. Also
St(F;, X)NR;= & for all ©>j so that R is locally finite.

(ii) Let xEX. Choose the smallest 7 such that K(x)N[St(F;, )]~
# . Clearly K(x) CX —U,<:[St(F;, ®)].~ We claim that K(x) CD..
Then K(x) CR; and hence ® is Lebesgue.

Let yEK(x). Since K(x) can be open, there exists r&EX such that
rEK(x)NSt(F;, K). Thus there exist s€EX and tEF; such that
r&EK(s) and tEK(s)NF;. Therefore we have t&K(s), s€K(r),
r&EK(x), and x€K(y). Hence (¢, ¥)EK*CV so that y&EV(f). By
definition tE F; implies that V()N [X —D;]=&. Thus yEV(¢) CD;
so that K(x) CD;.

We now have a Lebesgue characterization for ds.

THEOREM 3.4. Let (X, U) be a paracompact uniform space. Then
de(X, W) =<n if and only if every countable Lebesgue cover has an open
refinement of order=<n-+1.

4. The uniformity dimension function d;

DEFINITION 4.1. Let (X, U) be a uniform space. If X =, then
di(X, Uu) = —1. Otherwise, d+(X, U)=n if (X, U) satisfies this condi-
tion.

(D7) Given any collection of closed pairs {C., Cd:a€4} such
that

1) {Ca Cd :aEA} are uniformly separated.

2) {(X-<CJ :aEA} is locally finite.

Then there exist closed sets B, separating C, and C, such that
ord{B.:a€A4}=n.



1969] UNIFORMITY-DIMENSION FUNCTIONS 169

THEOREM 4.2. Let (X, W) be a paracompact uniform space. Then
d+(X, W) = n if and only if every locally finite Lebesgue cover of X has a
refinement of order<n--1.

ProoOF. The proof is essentially the same as proof of [9, Theorem
4.2]. Paracompactness is now required so that [6, Theorem 1.3] is
applicable.

5. Conclusion. The table in paragraph 1 is now complete for uni-
form spaces (X, U). The Lebesgue characterizations are exactly the
same as for metric spaces but complete normality is required for the
dimension functions ds, d; and paracompactness is required for ds,
dq and d,.
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