LEBESGUE CHARACTERIZATIONS OF UNIFORMITY-DIMENSION FUNCTIONS

JAMES C. SMITH, JR.

1. Introduction. Let (X, p) be a metric space, let $\dim(X)$ be the covering dimension of X, and let $d_0(X, p)$ be the metric dimension of X. Let d_2 and d_3 denote the metric-dependent dimension functions introduced by Nagami and Roberts [7], and let d_6 and d_7 be the metric-dependent dimension functions introduced by Smith [9]. Characterizations of some of these metric-dependent dimension functions in terms of Lebesgue covers have been given by Egorov [1], Wilkinson [11] and Smith [9]. These results are described by the following table.

Metric-dependent dimension function	Characterization
$d_2(X, p) \leq n$	Every Lebesgue cover consisting of $n+2$ members has an open refinement of order $\leq n+1$
$d_3(X, p) \leq n$	Every finite Lebesgue cover has an open refinement of order $\leq n+1$
$d_6(X, p) \leq n$	Every countable Lebesgue cover has an open refinement of order $\leq n+1$
$d_7(X, p) \leq n$	Every locally finite Lebesgue cover has an open refinement of order $\leq n+1$
$d_0(X, p) \leq n$	Every Lebesgue cover has an open refinement of order $\leq n+1$

Soniat [10] has generalized the dimension functions d_0 , d_2 and d_3 for uniform spaces and obtained Lebesgue-type characterizations for d_3 and d_0 . In this paper we complete the above characterization table for uniform spaces. In §2 we develop Lebesgue cover properties for uniform spaces and characterize d_2 . In §§3 and 4 we generalize the dimension functions d_6 and d_7 to uniform spaces and characterize them in terms of Lebesgue covers.

DEFINITION. Let X be a set and $\mathfrak{D} = \{\mathfrak{D}_{\lambda} : \lambda \in A\}$ be a family of collections of subsets of X. For each $\lambda \in A$, let $\mathfrak{D}_{\lambda} = \{D_{\alpha} : \alpha \in A_{\lambda}\}$. Then

$$\bigwedge_{\lambda \in \Lambda} \{ \mathfrak{D}_{\lambda} \} = \{ \cap D_{\alpha(\lambda)} \colon \alpha(\lambda) \in A_{\lambda}, \lambda \in A \}.$$

DEFINITION. Throughout this paper J will denote the set $\{1, 2, \dots, n+1\}$ and $J' = J \cup \{n+2\}$, where the integer n will always be understood.

2. Characterization of d_2 for uniform spaces. The reader is referred to the papers by Nagami and Roberts [7], Smith [9], and Soniat [10] for the definitions of the dimension functions d_0 , d_2 , d_3 , d_6 and d_7 and the generalizations of d_0 , d_2 , and d_3 to uniform spaces.

DEFINITION 2.1. Let C and C' be subsets of a uniform space (X, \mathfrak{A}) . We say that C and C' are *separated* provided there exists $U \in \mathfrak{A}$ such that $(C \times C') \cap U = \emptyset$. If $C = \{C_{\alpha}, C'_{\alpha} : \alpha \in A\}$ is a family of pairs $(C_{\alpha}, C'_{\alpha})$, then C is called *uniformly separated* if there exists $U \in \mathfrak{A}$ such that $(C_{\alpha} \times C'_{\alpha}) \cap U = \emptyset$ for all $\alpha \in A$.

DEFINITION 2.2. A cover $\mathfrak D$ of a uniform space $(X, \mathfrak U)$ is called Lebesgue if there exists $U \in \mathfrak U$ such that $\{U(x): x \in X\}$ refines $\mathfrak D$.

DEFINITION 2.3. A cover $\mathfrak{D} = \{D_{\alpha} : \alpha \in A\}$ of a uniform space (X, \mathfrak{U}) is called \mathfrak{U} -shrinkable if there exists some $U \in \mathfrak{U}$ and a cover $\mathfrak{F} = \{F_{\alpha} : \alpha \in A\}$ such that

- (1) $F_{\alpha} \subset D_{\alpha}$ for all $\alpha \in A$.
- (2) $\{F_{\alpha}, X D_{\alpha} : \alpha \in A\}$ is uniformly separated by U.

THEOREM 2.4. A cover $\mathfrak D$ of a uniform space $(X, \mathfrak U)$ is Lebesgue if and only if $\mathfrak D$ is $\mathfrak U$ -shrinkable.

PROOF (Necessity). Let $\mathfrak{D} = \{D_{\alpha} : \alpha \in A\}$ be a Lebesgue cover of (X, \mathfrak{U}) . Then there exists $U \in \mathfrak{U}$ such that $\{U(x) : x \in X\}$ refines \mathfrak{D} . Choose $V \in \mathfrak{U}$ such that V is symmetric and $V^2 \subset U$. Define $F_{\alpha} = \{x : V(x) \cap (X - D_{\alpha}) = \emptyset\}$ for $\alpha \in A$.

- (i) We assert that $\{F_{\alpha}: \alpha \in A\}$ covers X. Clearly $F_{\alpha} \subset D_{\alpha}$ for all $\alpha \in A$. Let $x \in D_{\alpha} F_{\alpha}$. Then since $\{U(x): x \in X\}$ refines \mathfrak{D} , there exists $\beta \in A$ such that $V(x) \subset U(x) \subset D_{\beta}$. Hence $V(x) \cap (X D_{\beta}) = \emptyset$ so that $x \in F_{\beta}$.
- (ii) We now assert that $\{F_{\alpha}, X D_{\alpha} : \alpha \in A\}$ is uniformly separated by V. Suppose there exists some $\beta \in A$ such that $[F_{\beta} \times (X D_{\beta})] \cap V \neq \emptyset$. Let $(x, y) \in [F_{\beta} \times (X D_{\beta})] \cap V$. Then $x \in F_{\beta}$, $y \in X D_{\beta}$ and $X \in V(y)$ and $y \in V(x)$. But $x \in F_{\beta}$ implies $V(x) \cap [X D_{\beta}] = \emptyset$ so $y \notin V(x)$, a contradiction.

REMARK. It should be noted at this point that the cover $\mathfrak{F} = \{F_{\alpha}: \alpha \in A\}$ defined above is Lebesgue. If $x \in X$, then there exists $\beta \in A$ such that $x \in U(x) \subset D_{\beta}$. Clearly $x \in F_{\beta}$ and we assert that $V(x) \subset F_{\beta}$. Let $y \in V(x)$ and $z \in V(y)$, so that $(x, y) \in V$ and $(y, z) \in V$. Hence $(x, z) \in V^2 \subset U$ and therefore $z \in U(x) \subset D_{\beta}$. It now follows that $V(y) \cap (X - D_{\beta}) = \emptyset$ and $y \in F_{\beta}$. Thus $V(x) \subset F_{\beta}$.

(Sufficiency). Suppose $\mathfrak{D} = \{D_{\gamma}: \alpha \in A\}$ is \mathfrak{A} -shrinkable to $\mathfrak{F} = \{F_{\alpha}: \alpha \in A\}$, where $\{F_{\alpha}, X - D_{\alpha}: \alpha \in A\}$ is uniformly separated by symmetric $U \in \mathfrak{A}$. Let $x \in X$. Since \mathfrak{F} is a cover of X, there exists $\beta \in A$ such that $x \in F_{\beta}$. Let $y \in U(x)$ so that $(x, y) \in U$. But

$$U \cap [F_{\beta} \times (X - D_{\beta})] = \emptyset$$

and hence $y \in X - D_{\beta}$. Thus $y \in D_{\beta}$ and $U(x) \subset D_{\beta}$. Therefore $\{U(x): x \in X\}$ refines \mathfrak{D} and \mathfrak{D} is Lebesgue.

For normal uniform spaces (X, \mathfrak{A}) Soniat has shown the following [10, Theorem 3.8].

THEOREM 2.5. Let (X, \mathfrak{A}) be a normal uniform space. Then $d_2(X, \mathfrak{A}) \leq n$ if and only if for every uniformly separated collection $\{C_i, C_i': i \in J\}$ of closed sets, there exists a closed collection $\{B_i: i \in J\}$ such that B_i separates C_i and C_i' and $\bigcap_{i \in J} B_i = \emptyset$.

Note. Here the separating sets B_i are subsets of X and separate C_i and C_i in the usual sense and are not to be confused with elements of the uniformity \mathfrak{A} .

The next theorem now follows directly from [9, Theorem 2.3] where the Lebesgue covers are now in the uniformity sense rather than the metric sense.

THEOREM 2.6. Let (X, \mathbb{Q}) be a completely normal uniform space. Then $d_2(X, \mathbb{Q}) \leq n$ if and only if for every collection $\{\mathfrak{D}_i : i \in J\}$ of n+1 binary Lebesgue covers of X, the cover $\mathfrak{D} = \bigwedge_{i \in J} \mathfrak{D}_i$ of X has an open refinement of order $\leq n+1$.

We now obtain a Lebesque characterization of (X, \mathfrak{A}) analogous to [9, Theorem 2.4].

THEOREM 2.7. Let (X, \mathfrak{A}) be a completely normal uniform space. Then $d_2(X, \mathfrak{A}) \leq n$ if and only if every Lebesgue cover $\mathfrak{D} = \{D_1, D_2, \cdots, D_{n+2}\}$ of X consisting of n+2 members has an open refinement of order $\leq n+1$.

PROOF (Necessity). Suppose $d_2(X, \mathfrak{A}) \leq n$, and let $\mathfrak{D} = \{D_1, D_2, \cdots, D_{n+2}\}$ be a Lebesgue cover of X. Then there exists $U \in \mathfrak{A}$ such that $\{U(x): x \in X\}$ refines \mathfrak{D} . By Theorem 2.4 above we can uniformly shrink \mathfrak{D} to a closed Lebesgue cover $\mathfrak{F} = \{F_1, F_2, \cdots, F_{n+2}\}$ such that $F_i \subset D_i$ for $i \in J'$. Then for each $i \in J$, $\mathfrak{D}_i = \{D_i, X - F_i\}$ is a binary Lebesgue cover of X. By Theorem 2.6 above $\mathfrak{D}^* = \Lambda_{i \in J} \mathfrak{D}_i$ has an open refinement \mathfrak{D}^{**} such that $\operatorname{ord}(\mathfrak{D}^{**}) \leq n+1$. But \mathfrak{D}^* refines \mathfrak{D} since \mathfrak{F} covers X. Hence \mathfrak{D}^{**} is the desired open cover.

(Sufficiency). Let $\{C_i, C_i' : i \in J\}$ be a collection of n+1 pairs of closed sets which are uniformly separated by $U \in \mathfrak{U}$. Choose K and V symmetric in \mathfrak{U} such that $K \subset K^2 \subset V \subset V^2 \subset U$. Now define $\mathfrak{K} = \{K(x) : x \in X\}$ and $\mathfrak{V} = \{V(x) : x \in X\}$. Define for each $i \in J$, $D_i = \operatorname{St}(C_i, \mathfrak{V})$ and $H_i = [\operatorname{St}(C_i, \mathfrak{K})]^-$ where $\operatorname{St}(C_i, \mathfrak{V})$ is the star of C_i with respect to the cover \mathfrak{V} . Let $D_{n+2} = X - \bigcup_{i \in J} H_i$. Clearly $\mathfrak{D} = \{D_1, D_2, \cdots, D_{n+2}\}$ is an open Lebesgue cover of X. Hence \mathfrak{D} has an open refinement $\mathfrak{R} = \{R_\alpha : \alpha \in A\}$ such that the $\operatorname{ord}(\mathfrak{R}) \leq n+1$. Define f to be the function, $f : A \to J'$, such that

$$f(\alpha) = \{ \text{smallest integer } i \in J' \text{ such that } R_{\alpha} \subset D_i \}.$$

Now define $R_i = \bigcup \{R_{\alpha}: f(\alpha) = i\}$ for each $i \in J'$. Hence $\mathfrak{R} = \{R_1, R_2, \dots, R_{n+2}\}$ may replace $\{R_{\alpha}: \alpha \in A\}$. Choose $K^* \in \mathfrak{U}$ such that $(K^*)^2 \subset K$ and define

$$\mathfrak{K}^* = \{K^*(x) : x \in X\}, \qquad E_i = \{x : x \in C_i, x \in R_i\},$$

$$S_i = \text{St}(E_i, \mathfrak{K}^*), \qquad R_i^* = R_i \cup S_i, \text{ for } i \in J, \text{ and } R_{n+2}^* = R_{n+2}.$$

Now $S_i \cap D_{n+2} = \emptyset$; for $x \in S_i$ implies that $x \in St(E_i, \mathcal{K}^*) \subset St(C_i, \mathcal{K})$ $\subset H_i$ so that $x \notin D_{n+2}$. Hence $\mathfrak{R}^* = \{R_1^*, R_2^*, \cdots, R_{n+2}^*\}$ is an open cover of X such that ord $(\mathfrak{R}^*) \leq n+1$ and $C_i \subset R^*$ for $i \in J$. Since \mathfrak{R}^* is finite there exists by [5, Lemma 1.5] a closed cover $\mathfrak{F} = \{F_1, F_2, \cdots, F_{n+2}\}$ of X such that $C_i \subset F_i \subset R_i^*$ for $i \in J$, and $F_{n+2} \subset R_{n+2}^*$. X normal implies that there exist open sets 0_i such that $F_i \subset 0_i \subset \overline{0}_j \subset R_j^*$ for $i \in J$. Define $B_i = \overline{0}_i - 0_i$ for $i \in J$. Clearly B_i is a closed set separating C_i and C_i' for $i \in J$. We assert $\bigcap_{i \in J} B_i = \emptyset$. Suppose there exists $x \in \bigcap_{i \in J} B_i$. Then $x \notin F_i$ for each $i \in J$. Hence $x \in F_{n+2} \subset R_{n+2}^*$. But $x \in R_i^*$ for all $i \in J$ and hence $x \in \bigcap_{i \in J'} R_i^*$. This is a contradiction since $\operatorname{ord}(\mathfrak{R}^*) \leq n+1$. Hence $d_2(X, \mathfrak{A}) \leq n$.

3. The uniformity dimension function d_6

DEFINITION 3.1. Let (X, \mathfrak{A}) be a uniform space. If $X = \emptyset$, $d_{\mathfrak{b}}(X, \mathfrak{A}) = -1$. Otherwise $d_{\mathfrak{b}}(X, \mathfrak{A}) \leq n$ if (X, \mathfrak{A}) satisfies this condition: $(D_{\mathfrak{b}})$ Given any countable collection of closed pairs $\{C_i, C'_i : i=1, 2, \cdots\}$ such that

(1) $\{C_i, C_i': i=1, 2, \cdots\}$ is uniformly separated,

(2) $\{X-C'_i: i=1, 2, \cdots\}$ is locally finite,

then there exist closed sets B_i separating C_i and C'_i such that ord $\{B_i: i=1, 2, \cdots\} \leq n$.

THEOREM 3.2. Let (X, \mathfrak{A}) be a paracompact uniform space. Then $d_{\mathfrak{b}}(X, \mathfrak{A}) \leq n$ if and only if every countable, locally finite Lebesgue cover of X has an open refinement of order $\leq n+1$.

PROOF. The proof is essentially the same proof as that of [9, Theorem 3.2].

THEOREM 3.3. Let (X, \mathfrak{A}) be a uniform space. Then every countable Lebesgue cover of X has a countable locally finite Lebesgue refinement.

PROOF. Let $\mathfrak{D} = \{D_1, D_2, \cdots\}$ be a Lebesgue cover of X. Then there exists $U \in \mathfrak{U}$ such that $\{U(x): x \in X\}$ refines \mathfrak{D} . Choose V and K symmetric in \mathfrak{U} such that $K \subset K^4 \subset V \subset V^2 \subset U$ and define $F_i = \{x: V(x) \cap [X - D_i] = \emptyset\}$ for all i. As before $\mathfrak{F} = \{F_i: i = 1, 2, \cdots\}$ is a Lebesgue cover of X. Now let

$$R_i = D_i - \bigcup_{j < i} [St(F_j, \mathcal{K})]^-, \text{ where } \mathcal{K} = \{K(x) \colon x \in X\}.$$

Clearly $\mathfrak{A} = \{R_1, R_2, \dots\}$ refines \mathfrak{D} in a 1-1 manner. We assert that \mathfrak{A} is a locally finite Lebesgue cover of X.

- (i) Let $x \in X$. Choose the smallest i such that $x \in [St(F_i, \mathcal{K})]^-$. Then $x \in D_i \bigcup_{j < i} [St(F_j, \mathcal{K})]^- = R_i$ and hence R covers X. Also $St(F_j, \mathcal{K}) \cap R_i = \emptyset$ for all i > j so that \mathfrak{R} is locally finite.
- (ii) Let $x \in X$. Choose the smallest i such that $K(x) \cap [St(F_i, \mathcal{K})]^- \neq \emptyset$. Clearly $K(x) \subset X \bigcup_{j < i} [St(F_i, \mathcal{K})]$. We claim that $K(x) \subset D_i$. Then $K(x) \subset R_i$ and hence \mathfrak{R} is Lebesgue.

Let $y \in K(x)$. Since K(x) can be open, there exists $r \in X$ such that $r \in K(x) \cap \operatorname{St}(F_i, \mathcal{K})$. Thus there exist $s \in X$ and $t \in F_i$ such that $r \in K(s)$ and $t \in K(s) \cap F_i$. Therefore we have $t \in K(s)$, $s \in K(r)$, $r \in K(x)$, and $x \in K(y)$. Hence $(t, y) \in K^4 \subset V$ so that $y \in V(t)$. By definition $t \in F_i$ implies that $V(t) \cap [X - D_i] = \emptyset$. Thus $y \in V(t) \cap D_i$ so that $K(x) \cap D_i$.

We now have a Lebesgue characterization for d_6 .

THEOREM 3.4. Let (X, \mathfrak{A}) be a paracompact uniform space. Then $d_{\mathfrak{g}}(X, \mathfrak{A}) \leq n$ if and only if every countable Lebesgue cover has an open refinement of order $\leq n+1$.

4. The uniformity dimension function d_7

DEFINITION 4.1. Let (X, \mathfrak{A}) be a uniform space. If $X = \emptyset$, then $d_7(X, \mathfrak{A}) = -1$. Otherwise, $d_7(X, \mathfrak{A}) \leq n$ if (X, \mathfrak{A}) satisfies this condition.

- (D_7) Given any collection of closed pairs $\{C_\alpha, C'_\alpha : \alpha \in A\}$ such that
 - (1) $\{C_{\alpha}, C'_{\alpha} : \alpha \in A\}$ are uniformly separated.
 - (2) $\{X C'_{\alpha} : \alpha \in A\}$ is locally finite.

Then there exist closed sets B_{α} separating C_{α} and C'_{α} such that ord $\{B_{\alpha}: \alpha \in A\} \leq n$.

THEOREM 4.2. Let (X, \mathfrak{A}) be a paracompact uniform space. Then $d_7(X, \mathfrak{A}) \leq n$ if and only if every locally finite Lebesgue cover of X has a refinement of order $\leq n+1$.

PROOF. The proof is essentially the same as proof of [9, Theorem 4.2]. Paracompactness is now required so that [6, Theorem 1.3] is applicable.

5. Conclusion. The table in paragraph 1 is now complete for uniform spaces (X, \mathfrak{A}) . The Lebesgue characterizations are exactly the same as for metric spaces but complete normality is required for the dimension functions d_2 , d_3 and paracompactness is required for d_6 , d_7 and d_0 .

REFERENCES

- 1. V. I. Egorov, On the metric dimension of point sets, Mat. Sb. 48 (1959), 227-250. (Russian)
- 2. R. E. Hodel, Note on metric-dependent dimension functions, Fund. Math. 61 (1967), 83-89.
- 3. W. Hurewicz and H. Wallman, *Dimension theory*, Princeton Univ. Press, Princeton, N. J., 1955.
- 4. M. Katětov, On the relation between metric and topological dimensions, Czechoslovak Math. J. 83 (1958), 163-166. (Russian: English summary)
 - 5. K. Morita, On the dimension of normal spaces. I, Japan J. Math. 20 (1950), 5-36.
- 6. ——, On the dimension of normal spaces. II, J. Math. Soc. Japan 2 (1950), 16-33.
- 7. K. Nagami and J. H. Roberts, Study of metric-dependent dimension functions, Trans. Amer. Math. Soc. 129 (1967), 414-435.
 - 8. J. Nagata, Modern dimension theory, Interscience, New York, 1965.
- 9. J. C. Smith, Characterizations of metric-dependent dimension functions, Proc. Amer. Math. Soc. 19 (1968), 1264-1269.
 - 10. L. Soniat, Ph.D. dissertation, Duke University, 1967. (Unpublished)
- 11. J. B. Wilkinson, Covering dimension and metric-dependent dimension functions, Ph.D. dissertation, Duke University, 1966. (unpublished)

VIRGINIA POLYTECHNIC INSTITUTE