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Secondary cohomology operations have proved very useful in re-

cent years [2], [5],  [6].

Here we show that certain secondary operations are associated

with the divisibility by 2 of the Chern classes of complex vector bun-

dles, and so we obtain a very simple method for evaluating them.

Thus let i>4j be the secondary operation based on the relation

Sq^q4^ (Sq2Sq1)Sq4^2 + Sq^Sq1 = 0.

Let e be a generator of H2iCP<°, Z) and p:77*( , Z)->77*( , Z2) the

coefficient homomorphism.

Theorem A. Let k be divisible by 4 and suppose the 2jth integral

Chern class C2j of kr¡ (?j is the canonical line bundle over CPX) satisfies

C2j = 26; then <p4,(p(e*)) = p(ek)KJp(Q) with zero indeterminacy.

The total Chern class of kr\ is (1+c)*; hence

c" ■ 0"'
and we have for example

%(p(e2')) = P(e2'^1).

More generally

Corollary. Let i = 2ra and 4/ = 2r~lb with a, b odd; then

C:>1(2)

implies $ij(p(ei))=p(ei+2'~).

This last result includes as special cases the basic results in this

direction of [l], [5], [6]. The proof of A turns out to be very easy and

is given in §2. Further, our viewpoint simplifies the original proof of

Hopf invariant one as given in [l] to the point where it may be even

easier than the recent K-theory proofs of [3], [4], [7], so we include
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an outline proof in §3. Finally, in §4 we extend these results to secon-

dary operations on RP".

Theorem A is essentially 3.3.2 of [9] and the methods of proof are

similar. A can also be obtained by using the results of [lO] and 5-

duality [ll, §4]. Maunder's approach allows one to evaluate certain

higher order operations built up from the i>4y in CPa' as well. However

our Theorem B does not seem to follow from [lO] or [ll], and the

methods in §§2 and 4 also generalize to higher order operations (see

[8]). Indeed our main object in presenting this paper was to help

clarify [8]. Moreover, the viewpoint on higher order operations im-

plicit in this note seems to be lacking in the literature.

2. Theorem B and the proof of Theorem A. Let E„ be the universal

example for <3?4y on an integral class of dimension n. Thus En is the

fiber in the map

0 = Sq^2(O XSq«(0 :*(£,»)

-+ K(Z2, n + Aj-2)X K(Z2, n + 4;)

and we have the sequence of fibrations

F = K(Z2, n + Aj - 3) X if (Z2, n + Aj - 1) 1+ En ̂  K(Z, n)

2 2 6
-> K(Z2, n + Aj-2)X K(Z2, n + Aj).

Let T(k) be the Thorn space of the universal complex ¿-plane

bundle, and denote the Thorn class as UEH2h(T(k), Z). From the

map (U) : T(k)-+K(Z, 2k) and the fibration ir:E2k-^K(Z, 2k) we have

the induced fibration (U)fE2k over T(k) and the diagram of fibra-

tions:

(U)Œ2k —► E2k

T(k) —-» K(Z, 2k)

The following lemma is evident.

Lemma 2.3. Let vEH*(E2k) be a universal example for $4,. Let U be

the Thorn class of a complex k-bundle £ over a space X; then

#«,(17) = {L*((Ü)*v)}

where L runs over all liftings which make the following diagram com
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mute:

(U)*E2k

Lf    It

n& -> T(k)

Lemma 2.4. In H*( U*E2k, Z) there are classes X, Y so

(i) i*(C2,_AJt/)=2X
(ii) ñ*(Ci¡\JU) = 2Y
(iii) U*(p) ~p(Y) + Sq2p(X) + w*(p(PUU)) where P is a

polynomial of degree 4/ in the Chern classes Ci, • • • , C2¡-2,

Proof. H2«+u(U*E2k, Z2) = (imÏ*)8(im /*), and also j*(0*(v))

= Sq1(t24+4j-i)+Sq2Sq1(t2i+4j-3); hence the lemma follows when we

observe that if X, Y exist then they must restrict to Sq1(i2i+4y_a),

Sq1('24+4;-i) respectively, since this is true in the universal example

for division by two, namely the fibering

K(Z2, n - 1) -> K(Z, n) -^+ K(Z, n).

On the other hand, to show the existence of X, Y is now completely

direct.

Putting these results together we have

Theorem B. Let B be the Thorn space of £, a complex k-bundle over a

space X for which p(Ci) =0. Suppose there are integer classes X, Y so

Ctj-.i(£)=2X, C2y(£)=2F; then $>n(pU) is defined in H*(T, Z2) and
modulo the total indeterminacy

^(pU) = [Sq2P(X) + p(Y)]KJp(U).

To complete the proof of B note that in the map

X: 22*+4¿-47(2; - 2) -► T(k)

we have

\*p(P W U) = $4y(<r2*-^-4t/2y-2) = ^-^-^(U^)

and v can be chosen so this last is zero,2 but since P is a polynomial

in G, • • • , C2y_2 the fact that X*(pPU TO =0impliesp(PUt/)= Oand
B follows since Sq2(p(£/)) =0.

To complete the proof of A note that the Thorn space of kr¡ over

2 *4j is defined onpof any integral 4;—3 class, and thus its value on a 4j—4 class a

is a stable cohomology operation Sq'(o). Then we choose a new représentant for *,

specifically we set ii" = i>+Sq'(i).
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CPX is CPx/CPk~1. The theorem now follows from B and the evident

map p:CPx^>CP'°/CPk-1 which collapses the 2k — 1 skeleton to the

base point since p(p*T(kr])*(U)) =p(ek).

3. Hopf invariant one. 0(2) is the Steenrod algebra [12]. ß(2)

<8>ö(2) becomes an 0,(2) module when we set a(a®b)=aa<g)b, and

w:a(2)®a(2)—>Ct(2) is given by m(a®b)=ab.

Definition 3.1. An element x= X)ai®Sq2*£a(2)<g)a(2) is a

minimal relation if m(x) =0.

Clearly the set of minimal relations is a module Ö over ß(2) and a

basic set of relations is any 0,(2) basis for d, say {ei'.iEl} for some

index set I. A relation among relations is an element y= /Ai®&,-.,■

®Sq2'in a(2)®a(2)®a(2) so (m®l) (y) = (l®m)(y) =0.

Lemma 3.2. Le/ £„,,■ be the two-stage Postnikov system obtained by

killing SqHO. Sq2(i), ¿q4(0 ■ ■ ■ Sq2*(i) in H*(K(Z2, n), Z2), (n>2k);

then H*(En,i, Z2) is isomorphic to the module of minimal relations

(over (1(2) and with degree diminished by one) in dimension less than

n + 2i+1. In dimension « + 2i+1 there is also Sq2' (i), and if y is a rela-

tion among relations ( 2^a,®&i,j<8>Sq21) then in H*(En¡i, Z2) we have

/Ai {bi,j®Sl3} =X(y)Sq2'  (t) where\ = 0 or 1 and depends only on y.

(The proof is a simple exercise with the Serre spectral sequence, the

Steenrod algebra and the stability of the Steenrod operations.)

Lemma 3.3 (J. F. Adams), (a) A basic set of minimal relations is

given by a doubly indexed family R(i,j) (of degree 2* + 2J) 0^i<j—l or

i=j. (b) There is a relation among relations of the form

(Sq2' + b){R(0,i)} + •••

where b is decomposable, for ¿1=3.

(The proof is an exercise in handling 0,(2). Part (b) follows, for

example, by proving hah2 is nonzero in Exta(2)(Z2, Z2) for ¿ = 3.)

Now consider the mapping (i):En,i-+En where En is the universal

example for $2*. The following is immediate.

Lemma 3.4. (i)*(v) - {R(0, i)} + £aí.* {-K0'.*>} where k <i.

Now the basic theorem of [l] becomes

Theorem 3.5. In H*(En¡i, Z2) we have (Sq2<+b) {R(0, i)}+ ■ ■ ■

= Sq2*  (i) for ¿2:3, and thus there is no two cell complex with Sq2*

nonzero, i^3.

Proof. By A and 3.4 the only secondary operation among the
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{R(j,k)} ik g i) which is nonzero on pie2') is (i?(0,i)} (thei?(/,£) for

/>0 all have odd degree, and i?(0, k) for k<i are 0 by A). Hence

[(Sq2<+&){i?(0,¿)}+ • • • ] ipie2<))=Sq2i{RiO, i) }p(e2Í) =Sq2Íp(ÉÁ2Í~1)

= Sq2'   ipie2')) and the proof is complete.

4. Secondary operations in RPX. Consider again the results of §3.

i>s is defined and nonzero on p(e8+16*) in 77*(CP°°). But if ir:RPx

-^>CPX is the nontrivial map then <i>8(7r*(p(e8+16*))) =0 due to inde-

terminacy. On the other hand, from the universal relation Sqls

= Sq*$8+ • • • it follows that the set

{$8(T*(p(y+16*))), \R(3, 3)}iT*iPie^k))), ■■■}

cannot all vanish simultaneously. Thus this set of operations, even

modulo indeterminacy, is not zero on the class of dimension 16 + 32&

in H*iRP°°, Z2).

There are similar results with Sq16 replaced by Sq2' (ó 4), and

we have

Theorem 4.1. There is no map

2*'+1(*+l)-l 2*'+2'+I*

RP 2'+2i+1*->S

inducing the nontrivial map in cohomology (7?P8 is RP' with the t — 1

skeleton collapsed to the base point).

Actually we can sharpen this result. Consider, for example, the

pair of relations

Sq^q8* + (Sq2Sq1)Sq8*-2 + Sq^Sq1 = 0,

Sq2Sq8i + Sq4Sq8*-2 + Sq8*Sq2 + Sq8*+1Sqx = 0.

Let G„ be the universal example for both operations, let wG77*(G„)

represent i>8t and co represent the second operation; then

J*(Sq8(tt) + (Sq7 + Sq4Sq2Sq1)o))

4.2 = (Sq9 + Sq6Sq2Sq1)^ + Sq^Sq^ + (Sq7 + Sq4Sq2Sq1)Sq8iC

+ (Sq8 + Sq7Sq1)Sq8Ä;7;

where D is the «-dimensional generator on the fiber, C is the w + 1-

dimensional generator, etc.

Let pie1) satisfy ^sk(p(el))^0 in H*(CP°°); then there is a map

m'.CP^-^Gu, and we have mlf(i)=p(ei) m*iu)¿¿0 and w*(w) = 0.

Thus the same is true for mT:RPK—>G2t. Moreover, any two liftings
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G2t

differ by a map into the fiber F. Thus if there were a lifting m so

w*(w) = m*(w) =0 there would be a map r:RP°°-+F and

4.3. r*(j*(u)) =í 0       while r*(j*(»)) = 0.

Theorem 4.4. Suppose k = l+As. Then (3>8*; «) o« (7r*p(e8(l+2X)))

cannot both vanish simultaneously if

0x\
5¿0.

s/

Proof. Under these assumptions

(1) Sq8í;p(e8(1+2X)+,) =0        (e = 0, 1),

(2) *8*(p(e8(1+2X>)) ^ 0,

(3) SqS$skP(eW+2») ^ 0.

Suppose now there were a map r'.RP^-^F satisfying 4.3; then from

4.2

r*(Sq8i* (m) + Sq2 + Sq4Sq2Sq1i*('o)) = 0,

but this is impossible since  Sq*(r*j*(u))7¿0  and  by  assumption

r*j*(w)=0.

Similar results can be obtained for $84+4 but we need three opera-

tions based on

Sq^q^4 + (Sq2Sq1)Sq84+2 + Sq8i+4Sq1 = 0,

Sq4Sq8i+2 + Sq8i+4Sq2 = 0,

Sq4Sq8i+4 + Sq84+6Sq2 + Sq^+'Sq1 = 0,

and if u represents the first, w the second, and x the third, we look at

j*(Sq*(u) + Sq4Sq2Sql(") + Sq^q'Sq2^))

on the fiber. The reader can easily supply details and further gen-

eralizations.

Remark. One could, of course, verify directly (as in [2], [5], [6])

that these operations do not vanish simultaneously, since we know
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how to evaluate the indeterminacy. However, the method given

here generalizes to higher order operations as in §3.4 of [8].
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