REMARKS ON COMMUTING INVOLUTIONS

LAWRENCE CONLON

In [3, p. 293] R. Hermann poses the following problem (without the restriction that G be simple).

(A) Given s_1 and s_2 nontrivial involutive automorphisms of a compact simple Lie group G, find $x \in G$ such that $Ad(x)s_1Ad(x)^{-1}$ commutes with s_2 .

We wish to discuss the existence of solutions for (A). Without real loss of generality we assume G simply connected. The respective fixed point groups of s_1 and s_2 are closed connected subgroups K_1 and K_2 of G, and K_1 acts from the left on G/K_2 . In both [1] and [3] it is shown that there is a flat geodesically imbedded torus $T \subset G/K_2$ which meets orthogonally every K_1 -orbit. Furthermore, if the decompositions of the Lie algebra $\mathfrak g$ of G into +1 and -1 eigenspaces are given respectively by

$$g = f_1 \oplus m_1$$
 $a = f_2 \oplus m_2$

then T has as universal covering a maximal abelian subalgebra t of $\mathfrak{m}_1 \cap \mathfrak{m}_2$. Indeed, T may be so chosen that, under the standard imbedding $G/K_2 \subset G$ (given by $zK_2 \rightarrow s_2(z)z^{-1}$), it becomes identified with $\exp(t)$. A complete description of the singular set in T is given in [1] by a finite system \mathfrak{A} (called an "affine root system") of affine functionals defined on t.

(B) THEOREM. (A) has a solution $x \in G$ if and only if some translation in t carries $\mathfrak A$ to a system $\mathfrak A'$ such that $\omega(0) = 0$ or $\frac{1}{2}$, for all $\omega \in \mathfrak A'$.

PROOF. By [1, pp. 233-234] translations in t correspond to replacing K_1 by $Ad(x)K_1$ for suitable $x \in T$, hence to replacing s_1 by $Ad(x)s_1Ad(x)^{-1}=s_1'$. If such a translation produces a system \mathfrak{A}' in which $\omega(0)=0$ or $\frac{1}{2}$, for every $\omega\in\mathfrak{A}'$, then by [1, Proposition S-3], $s_1's_2$ is an involution. It follows that $s_1's_2=s_2s_1'$; hence $x\in T\subset G$ solves (A).

For the converse, let $x \in G$ be such that $Ad(x)s_1Ad(x)^{-1}$ commutes with s_2 . We must show that x can be chosen as an element of T, in which case [1] will show that the affine root system translates to a system with all constant terms 0 or $\frac{1}{2}$. From Proposition 1.4 of [1] we easily see that $G = K_2TK_1$. Write $x = x_2yx_1$ for suitable $y \in T$,

 $x_i \in K_i$, i = 1, 2. Then

$$Ad(x)s_1Ad(x)^{-1} = Ad(x_2y)s_1Ad(x_2y)^{-1}$$

and this commutes with s_2 . Therefore, $Ad(y)s_1Ad(y)^{-1}$ commutes with $Ad(x_2)^{-1}s_2Ad(x_2) = s_2$. q.e.d.

The classification [2] has shown via (B) that (A) fails to have a solution in the cases equivalent to the following.

	G	K_1	K_2
(1)	$\mathrm{SU}(2q)$	$\mathrm{Sp}(q)$	U(2q-1)
(2)	SU(2r+2q) $(q>r+1)$	$\operatorname{Sp}(r+q)$	$S(U(2q-1)\times U(2r+1))$
(3)	$\operatorname{Spin}(2q)$	U(q)	Spin(2q-1)
(4)	$\frac{\operatorname{Spin}(2r+2q+2)}{(q>r)}$	U(r+q+1)	$\operatorname{Spin}(2r+1) \times_{\mathbb{Z}_2} \operatorname{Spin}(2q+1)$
(5)	Spin(8)	Spin(7)	$\omega({\rm Spin}(7))$
(6)	Spin(8)	Spin(7)	$\omega(\operatorname{Spin}(3) \times_{\mathbb{Z}_2} \operatorname{Spin}(5))$
(7)	Spin(8)	$\overline{\operatorname{Spin}(3) \times_{\mathbb{Z}_2} \operatorname{Spin}(5)}$	$\omega(\operatorname{Spin}(3) \times \mathbf{z_2} \operatorname{Spin}(5))$

Here ω is the triality automorphism of Spin(8) and the various subgroups are standardly imbedded. In all other cases (A) has a solution.

Hermann shows [3, Proposition 2.1] that K_1 has a totally geodesic orbit in G/K_2 if and only if (A) can be solved. Actually, as the following proposition shows, the cases in which K_1 is transitive on G/K_2 constitute technical counterexamples to Hermann's result (and were implicitly excluded in his proof).

(C) Proposition. If K_1 is transitive on G/K_2 , then (A) cannot be solved.

PROOF. Suppose the action transitive. If (A) has a solution $x \in G$, then $\mathrm{Ad}(x)K_1$ is also transitive on G/K_2 , so we may as well assume $s_1s_2=s_2s_1$. Necessarily $K_1K_2=G$; hence $\mathfrak{k}_1+\mathfrak{k}_2=\mathfrak{g}$ and $\mathfrak{m}_1\cap\mathfrak{m}_2=0$. s_1s_2 is an involutive automorphism of \mathfrak{g} with fixed point algebra $\mathfrak{k}_1\cap\mathfrak{k}_2$ and -1 eigenspace $\mathfrak{m}_1\oplus\mathfrak{m}_2$. Thus $\mathfrak{g}=\mathfrak{k}_1\cap\mathfrak{k}_2\oplus(\mathfrak{m}_1\oplus\mathfrak{m}_2)$ is the decomposition corresponding to some symmetric space. But $\mathrm{ad}_{\mathfrak{m}_1\oplus\mathfrak{m}_2}(\mathfrak{k}_1\cap\mathfrak{k}_2)$ is a reducible representation, \mathfrak{m}_1 and \mathfrak{m}_2 being invariant subspaces. By standard theory of symmetric spaces, this contradicts the fact that \mathfrak{g} is simple. q.e.d.

The transitive cases in the above table are precisely (1), (3), (5), and (6) (cf. [2], [4]).

Finally, we remark that a more careful study of the affine root system \mathfrak{A} permits a complete description of the totally geodesic K_1 -orbits in G/K_2 (cf. [2]).

REFERENCES

- 1. L. Conlon, The topology of certain spaces of paths on a compact symmetric space, Trans. Amer. Math. Soc. 112 (1964), 228-248.
- 2. ——, Classification of affine root systems and applications to the theory of symmetric spaces, Mimeographed Notes, Washington University, St. Louis, Missouri, 1968.
- 3. R. Hermann, Totally geodesic orbits of groups of isometries, Nederl. Akad. Wetensch. Proc. Ser. A 65 (1962), 291-298.
- 4. A. L. Oniščik, Inclusion relations between transitive compact transformation groups, Trudy Moskov. Mat. Obšč. 11 (1962), 199-242; English transl., Amer. Math. Soc. Transl. (2) 50 (1966), 5-58.

Washington University and St. Louis University