POSITIVE OPERATORS ON C(X)

S. R. FOGUEL¹

Abstract. Conditions for the existence of finite and σ finite invariant measures for a Markov operator on C(X) are studied.

Let X be a locally compact Hausdorff space and Σ be the collection of Baire sets. Let P be an operator on C(X) which satisfies

- (1) ||P|| = 1,
- (2) P1 = 1.

Now if $f \ge 0$ then $Pf \ge 0$, because we may assume that $0 \le f \le 1$ and then $P(1-f) = 1 - Pf \le 1$.

We shall also assume:

(3) If μ is a countably additive measure then so is $P^*\mu$.

By a measure we mean a positive finite measure, unless otherwise stated. Every countably additive measure is regular since it is defined on Baire sets.

It is enough to assume (3) only for $\mu = \delta_x$, $x \in X$, since then $P(x, A) = P^*\delta_x(A)$ is a probability measure for a fixed x and if $A \in \Sigma$, $P(\cdot, A)$ is Σ measurable: If $A \in \Sigma$ is compact then there exists a sequence of continuous functions $0 \le f_n \le 1$, $f_n \downarrow 1_A$ (where $1_A(x) = 0$ if $x \notin A$ and 1 if $x \in A$). Thus $P(x, A) = \lim_n P^*\delta_x(f_n) = \lim_n Pf_n(x)$ and is measurable. Now the collection of $A \in \Sigma$ such that $P(\cdot, A)$ is measurable is a σ field and thus all of Σ . Clearly $P^*\mu(A) = \int P(x, A)\mu(dx)$ is a countably additive measure whenever μ is. Also $Pf(x) = \int P(x, dy)f(y)$ and if $0 \le f_n \le 1$ and $f_n \downarrow f$ then $Pf_n(x) \to Pf(x)$. This last property almost implies (3).

THEOREM 1. Let X be a locally compact Hausdorff space and $X = \bigcup C_n$ where C_n are compact Baire sets. If the operator P satisfies (1), (2) and (3'):

(3') If $0 \le f_n \le 1$, $f_n \downarrow f$ and $f_n, f \in C(X)$ then $Pf_n(x) \to Pf(x)$. Then condition (3) holds.

PROOF. The operator P^* is defined on finitely additive regular measures, by [1, Theorem IV.6.2]. Let $0 \le \mu$ be countably additive and put $P^*\mu = \nu_0 + \nu_1$ as in [4, p. 52]; namely, ν_1 is countably additive and ν_0 is purely additive, i.e. if $0 \le \lambda \le \nu_0$ and λ is countably additive then $\lambda = 0$. Now if $A \in \Sigma$ is compact the restriction of ν_0 to A is countably additive by [1, Theorem III. 5.13] and thus $\nu_0(A) = 0$. Hence

Received by the editors August 30, 1968.

¹ Supported by the National Science Foundation Grant GP-7475.

 $\nu_0(f)=0$ for every continuous function with compact support. There exists a sequence of functions f_n , $0 \le f_n \le 1$, f_n continuous with compact support, $f_n \ge 1_{C_n}$. We may assume that the sequence is monotone since we may replace it by the sequence $\max(f_1, \dots, f_n)$. Thus $f_n \uparrow 1$ and $\nu_1(X) = \lim \nu_1(f_n) = \lim P^*\mu(f_n) = \lim \mu(Pf_n)$ and by (3') the limit is $\mu(X)$. Thus $\nu_0(X) = 0$ and $\nu_0 = 0$.

REMARKS. If X is compact then (3') follows from Dini's Theorem. We do not know if (3') suffices without assuming that X is the union of countably many compact sets.

In [2, Theorem 1] the problem of existence of a finite measure was studied. This result can be improved.

THEOREM 2. Assume (1), (2) and (3) and let A be a compact Baire set. Then either

- (a) $\sup_{x} (1/N) \sum_{n=0}^{N-1} P^n 1_A(x) \to 0$ or
- (b) there exists a countably additive invariant measure that does not vanish on A.

PROOF. Assume that (a) is false. Let $\delta > 0$ and N_i be an infinite sequence such that

$$A_{N_{i}} = \left\{ x : \frac{1}{N_{i}} \sum_{n=0}^{N_{i}-1} P^{n} 1_{A}(x) > \delta \right\}$$

are not empty. Put $\mu_i = \delta_{x_i}$, $x_i \in A_{N_i}$ and

$$\lambda_i = \frac{1}{N_i} \sum_{n=0}^{N_i-1} P^{*n} \mu_i.$$

Then λ_i is countably additive $0 \le \lambda_i$, $\lambda_i(X) = 1$ and $\lambda_i(A) \ge \delta$. Now any weak * limit of λ_i is an invariant measure that does not vanish on A.

To conclude this paper let us consider the sufficient condition, for the existence of a σ finite invariant measure studied in [3]. Put $T_A f(x) = 1_A(x) f(x)$ then, by [3], an invariant σ finite measure exists if for some Baire set A, whose complement is compact,

(4) $(T_A P T_A)^n 1(x) \rightarrow 0$ for every $x \in X$, as $n \rightarrow \infty$.

Also the invariant measure is finite on every compact set.

Let U be the collection of all open Baire sets whose closure is compact.

LEMMA 1. Condition (4) holds for every set A whose complement B is the closure of a set in $\mathfrak U$ if and only if condition (4) holds for every set A_1 whose complement B_1 belongs to $\mathfrak U$.

PROOF. Let B be the closure of B_1 in $\mathfrak A$ then if A, A_1 are complements, respectively, of B and B_1 , $A \subset A_1$, and so $(T_A P T_A)^n 1 \leq (T_{A_1} P T_{A_1})^n 1$ and if the right-hand side converges to zero so does the left-hand side. Conversely let $B_1 \subset \mathfrak A$; find an open set $B_0 \subset \mathfrak A$ with $B_0 \subset \operatorname{cl}(B_0) \subset B_1$. Put A as the complement of $\operatorname{cl}(B_0)$ and A_1 the complement of B_1 then $A_1 \subset A$ and $(T_{A_1} P T_{A_1})^n 1 \leq (T_A P T_A)^n 1$.

As in [3, Lemma 2] it is easy to show that if (4) holds for every set A, whose complement is in $\mathfrak U$ then $\sum_{n=1}^{\infty} P^n 1_B(x) > 0$ for every $x \in X$ and $B \in \mathfrak U$. Thus if λ is any σ finite countably additive invariant measure then $\lambda(B) > 0$ for every $B \in \mathfrak U$.

THEOREM 3. Let P satisfy (1), (2) and (3). The operator P satisfies (4), for every complement of a set in \mathfrak{A} , if and only if

(5) If g is upper semicontinuous, $0 \le g \le 1$, and $Pg \ge g$, then g is a constant.

PROOF. If condition (4) fails for some A whose complement $B \in \mathfrak{A}$, let α be a continuous function with $0 \le \alpha \le 1$, $\alpha \ge 1_A$ and $\alpha = 0$ on some set C, $C \in \mathfrak{A}$. Then $(\alpha P\alpha)^n 1 \downarrow g$ where g = 0 on C, g is not identically zero. Now $g = \alpha P\alpha g \le P(\alpha g) \le Pg$ and g is upper semicontinuous which contradicts (5). Conversely, if g is upper semicontinuous and $Pg \ge g$ find some $0 < \alpha < 1$ so that $\{x: g(x) < \alpha\}$ is an open set which is neither ϕ nor X. This is possible since g is not a constant. Put $g_1 = \max(g - \alpha, 0)$ then g_1 is again upper semicontinuous, $Pg_1 \ge g_1$ and $\{x: g_1(x) = 0\}$ contains an open set, V, in \mathfrak{A} . Let A be the complement of V then $(T_A PT_A)g_1 = T_A Pg_1 \ge T_A g_1 = g_1$ so $(T_A PT_A)^n 1 \ge (T_A PT_A)^n g_1 \ge g_1$ contradicting (4).

REFERENCES

- 1. N. Dunford and J. Schwartz, Linear operators, Interscience, New York, 1958.
- 2. S. R. Foguel, Invariant measures for Markov processes. II, Proc. Amer. Math. Soc. 17 (1966), 387-389.
- 3. ———, Existence of a σ finite invariant measure for a Markov process on a locally compact space, Israel J. Math. 6 (1968), 1-4.
- 4. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.

THE UNIVERSITY OF MINNESOTA AND
THE HEBREW UNIVERSITY OF JERUSALEM