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1. Introduction. Certain general results concerning continuity and

other analytic properties of the sample functions of a stochastic

process £(i), involve assumptions of the type

(1) Pr{ U(< + h) - m |   ||(i)| ûq{h),

where g(h) and q(h) are functions with particular properties near h = 0.

For example if

(2) g(h), q(h) are even, nonincreasing as h J, 0,

and

(3) Eg(2-)<»,        X><7(2-)< co,
n=0 n=0

then it follows (cf. [4], [l]) that there is a process r¡(t), equivalent to

£(/) and, with probability one, possessing everywhere continuous

sample functions. (Equivalence of £ and r¡ has the usual meaning that,

for each fixed t, %(t) =r¡(t) with probability one.)

A number of interesting results follow as corollaries from this

theorem. For example if £(¿) is a (zero mean) normal stochastic

process satisfying

(4) s|£(i + /0-£(0|2<C7|log|A||*

for some C>0, a>3, and all sufficiently small h, then g and q can be

chosen so that (2) and (3) are satisfied and hence (an equivalent

version of) £(/) has, with probability one, continuous sample func-

tions. However it is known (cf. [3], [2]) that if £(/) is a normal pro-

cess, the condition (4) may be weakened (e.g. by requiring only a> 1)

and still give a sufficient condition for continuity. This latter result

does not appear to follow from the general theorem quoted above.

In this note we shall give a general result for sample function

continuity from which, in particular, the more delicate results of [3]

for normal processes will follow. This result is obtained by modifying

the form of condition (3). The derivation uses methods very similar

to those in [4], [l] and especially [2], and will be sketched only. In
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addition we state corresponding theorems for the existence of a con-

tinuous sample derivative from which some results given in [4] and

[l] follow as particular cases. The results given, apply to processes

defined on the real line. While this is the most interesting case, we

note that it is possible to adapt some of the results to apply in more

abstract settings.

2. Continuity of sample functions. Consider a real (or complex)

stochastic process £(£) defined onO^t^i. The following easily proved

lemma enables us to replace [0, l] by a countable dense subset in

discussing continuity.

Lemma. Given %(t), there is an equivalent process {r)(t):Q^t^l}

whose sample functions are, with probability one, continuous on [0, l],

if and only if
(a) £(£) is continuous in probability on [0, 1 ], and

(b) there is a countable dense subset D of [0, 1 ] ora which £(i) is uni-

formly continuous with probability one.

Using this lemma we may obtain the main continuity theorem.

In the statement of this and later results, n, r2, ■ • • will denote

an arbitrary sequence of integers, each greater than one, and A„

= (V2 • • • rn)~l.

Theorem 1. Suppose that Pr{ |£(i+A)-£(0| ^g(A)} úq(h) for all t,

t-\-h in [O, 1 ] where g, q are even functions of A, q(h) being nonincreasing

as h JO and where

(a) Er g(A„) < «, Er tí. st*.) < °° -
(b) g(h)—»0 as A—>0 and there is a constant K such that g(shn+i)

úKg(hn) for s = 1,2 • • -rn+i, ra = l, 2

Then there exists a process r¡(t), equivalent to £(/), and possessing, with

probability one, continuous sample functions on [0, 1 ].

Sketch of Proof. Since for A sufficiently small

Pr{ | É(/ + A) - £(/) |   = e} = Pr{ | £(i + h) - £(0 | = g(h)}

âç(À)-»0,

it follows that £ is continuous in probability. Hence it only remains to

show uniform continuity on a countable dense subset of [O, l].

Write tn,a = shn and D= {/„,,: s = 0, 1, • • • A"1, ra = l, 2 • • • }. D is

clearly a countable dense subset of [0, l]. Now using (b) and the

monotonicity of q, it is easily seen that

(   max_    max    | £(rA„ + jAb+1) - £(rhn) \  = /íg(AJ i
Pf  •(   OsKA,,1 0<«sr»+i f    = «n+lÇ("„)
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and since ]T^ñ+i ç(An) < x, the Borel-Cantelli Lemma shows that

there is a random variable N such that

(5) | HirK + Shn+1)   - Î(fÂ») |     g   Kg(Itn)

for any integers n, r, s such that n^N, 0^r<An\ 0^s^e„+i.

Given e>0 let M be such that ¿^m è(hn)<e/(3K) and write N0 for

the random variable N+M+Í. Using (5) it may be shown that if

Si, s2ED and \s\ — st\ <Ajv„, then

| k{si). - «*0 |   Ú k\i  £ g(Ay) + g(Aw,)l < «
L     i-N, J

from which the required uniform continuity on D follows.

Corollary. In particular the theorem remains true if condition (b)

is replaced by the simpler requirement that g(h) be noninct-easing ash 10.

Application to normal processes. The weakest sufficient condition

we are aware of for sample function continuity in the normal case is

the following, given by Fernique [3]. Suppose that £(/) is a (zero

mean) normal process for which

(6) S | £(/ + h) - m |2 g V{h)       allí, Í + A G [0, 1],

where \p is even and nonincreasing as h j 0. If ^ satisfies the further

condition fx\p(e~x )dx< «>, then £ is equivalent to a process i){t)

possessing, with probability one, continuous sample functions on

[0, l]. This result may be obtained as an application of Theorem 1,

and we now briefly indicate the details.

Specifically, suppose £(/) is a zero mean normal process satis-

fying (6) with /00i/'([exp-x2])¿x<co. Write A„ = 2-2" and g(h)

= 4|log|Ä||1/V(Ä), q(h)=l\log\h\\-1i2e-s^^. Then it follows
from the integrability assumption on \f/ that 2 2(An) < °° • The re-

maining assumptions of Theorem 1 are easily checked.

Finally we note that the result mentioned in §1 involving equation

(4) with a > 1 can be deduced from the above result of Fernique, or

directly from Theorem 1 (again with An = 2-2 ).

3. Other analytic properties. One may obtain similar results to

Theorem 1, using the same methods, for differentiability of sample

functions of a stochastic process £(¿), or for the sample functions to

satisfy Lipschitz conditions. As examples, the following two results

yield sufficient conditions for the existence of a continuous sample

derivative. (These include certain results of [4] and [l].) In the

statements of these theorems, rn and An are as previously defined.

Theorem 2. Suppose Pr{ |£(i+A)-£(/)| ^g(h)} g,q(h) for all t,



294 R. LEADBETTER AND E. W. WEISSNER

t-\-hE[0, l] where g and q are even functions of A, nonincr easing as

A J, 0. Suppose that ^2K1g(hn) < » and EAñ'sO«) < °° • Then £(/) is
equivalent to a process t](t) which, with probability one, has a continuous

sample derivative on [0, l].

Theorem 3. Suppose £(¿) is continuous in probability on [0, l] and

that

Pr{ | £(¿ + A) - 2£(f) + £(/ - A) |   = g(A)} = S(A)

for all t, i+A, / — A E [0, l] where g and q are even, nonincreasing as

AJO, arad satisfy

E An   >"ng(An)   <   °° , E Ä"   o(A„)   <   =0 .

T'Aéra again £ « equivalent to a process r¡(t) which has, with probability

one, a continuous derivative on [0, l].

Theorems 2 and 3 contain different conditions on the process £(¿).

The conditions of Theorem 3 involving £(¿ + A), £(/), £(£ — A) are

weaker, in some cases, than those of Theorem 2. The conditions of

Theorem 2 are, however, likely to be easier to apply in general.
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