
ON THE NORMS OF UNITS IN QUADRATIC FIELDS

H. F. TROTTER

Let R be the ring of algebraic integers in the quadratic extension

Q(-\/d) oí the rationals, where d is a positive square-free integer. The

group of units of R is isomorphic to Z2®Z and generated by — 1 and

the fundamental unit 77. The norm of 77,7777, is of course +1 ; it is — 1 if

and only if the equation

(1) x2 - df- = - 1

has a solution in integers. (This and other basic facts stated here

without proof can be found in various texts on number theory such

as [l].) An obvious necessary condition for (1) to have a solution is

that no factor of d be congruent to 3 modulo 4. The result that this

condition is sufficient if d is prime goes back to Legendre; the general

problem has been investigated by a number of authors. (See the

introduction and list of references in [2].)

The theorem we give below does not seem to have been noted

explicitly. It is quite elementary and leads directly to various sufficient

conditions for the solvability of (1). The theorem and its proof were

suggested by the proof given in [l, p. 185] for the case that d is a

prime.

Theorem. Let d—pi ■ ■ ■ pnbe the product of distinct primes, none of

which is congruent to 3 modulo 4. Let R be the ring of algebraic integers

in Q(y/d) and 77 its fundamental unit. Then the following three conditions

are equivalent.

(i) 7777= -1.

(ii) None of the ideals [r, \/d] is principal, where r is a proper non-

trivial factor of d.

(iii)  The equation

(2) I rx2 - sy2\   =4

has no solution in integers with rs~d and neither r nor s equal to +1.

Proof. We use greek letters for elements of R and reserve latin

letters for rational integers. For each prime pi dividing d the ideal (pi)

factors as the square of the self-conjugate ideal [pi, \/d], which is

the unique ideal with norm pi. Hence for any r dividing d there is a

unique ideal of norm \r\, which is easily seen to be [r, -\/d\. It is

principal if and only if there exists an a with norm ait = ±r. For any
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a, 2a = u-\-vy/d where u and v have the same parity and are both even

if d is. Then 4aä = u2—dv2 and there exists a with aä= +r if and only

if

(3) | u2 - dv21   = 41 r |

has a solution in integers. (The parity conditions on u, v are auto-

matically satisfied for any solution of (3).) For any solution of (2),

u = rx and v=y gives a solution of (3). Conversely, for any solution of

(3), r divides u (since r divides d and is square-free) and s = d/r, x

= u/r, y=>v gives a solution of (2). Hence conditions (ii) and (iii) are

equivalent.

Now suppose r\d and [r, -\/d] is the principal ideal (a). Since the

ideal is self-conjugate, ä — ea for some unit e. Obviously ei — i. If (i)

holds then either e or — e is an even power of 77 and so e = ± S2 for some

unit 5. Then +r=aä = ta2= +52a2 and \r\ is a perfect square in R.

Hence \r\ = 1 or d. We have shown that (i) implies (ii).

If 7777 =+1 then by Hilbert's Theorem 90 [l, p. 185], r¡=a/a for
some a; we may assume that a and ä have no common factor. Since 77

is a unit, (a) = (a) and is a self-conjuga te ideal. Any ideal times its

conjugate is a principal ideal generated by a rational integer. The

self-conjugate prime ideals are those generated by rational primes

which remain prime in R, and the ideals [pi, y/d\. Thus any self-

conjugate ideal is the product of a principal ideal generated by a

rational integer and a product of the [pi, s/d]. A rational integral

factor of (a) would be a common factor of a and á, so (a) is either R

or the product of some subset of the [pi, -s/d]. In other words, (a)

= [r, -y/d] for some r dividing d. If r = 1 or d, a = e or e-y/d with ei = 1.

Then 77= ±e2, contradicting the assumption that 77 is a fundamental

unit. Consequently r is a proper nontrivial divisor of d. Thus (ii)

implies (i) and the proof is complete.

Corollary. The fundamental unit 77 has norm —I if there is no

nontrivial factorization d = rs such that r and s are quadratic residues of

each other.

Proof. Immediate from condition (iii) of the theorem. (The abso-

lute value signs are irrelevant since — 1 is a quadratic residue of all

the prime factors of d.)

The corollary gives easy sufficient conditions that 7777 = — 1 when d

is the product of just two primes, since then there is only one proper

factorization of d. If d = 2p, £ = 5 (mod 8), then 2 is a nonresidue

(mod p) and 7777= — 1. Similarly if d=pq, p = q=l (mod 4), p and q
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primes such that the Legendre symbol (p\q) = — 1, then 7777=— 1.

(The example d = 145 = 5.29 shows that this sufficient condition is not

necessary. Although (5 [ 29) = 1, t7 = 12 + v'145 and 7777 = (12+V145

(12-V145) = -1.)
Suppose d=pi • • ■ pn, with £¿=1 (mod 4) for all i, and define

Uj=(pi\pj) = (pj\pi)- A proper factorization of d corresponds to a

partition of (l, • • • , »} into two sets A and B with r= YlieA pi,

s=T\.j£Bpi- Define TA(j) = JJieA la lor 3GB and TB(i) = IL'en *tf
for iEA. Then r and s are quadratic residues of each other if and only

if TA(j) = 1 for all jEB and TB(i) = 1 for all iEA. In any particular

case it is easy to check whether there is a partition having this prop-

erty. Various general cases can also be handled. Those listed below

were suggested by examples given in [2], which are there derived as

consequences of deeper theorems that are considerably more compli-

cated than the theorem of this paper. Specifically, (3.14), (3.22), and

(3.26) of [2] are special cases of (a), (3.20) is a special case of (c) and

(3.24) and (3.25) are special cases of (b). (There seems to be a mis-

print in the statement of (3.25), which presumably should read, in

part, "(q2\ qz) = (qi\ qb) = — 1" but which appears without the minus

sign.)

Proposition. Let d be the product of distinct primes pi • • • pn "with

pi= 1 (mod 4) for all i, and set ¿,7 = (pi\p¡) = (p¡\ pi) for i^j. Each of
the following is a sufficient condition that the fundamental unit of Q(y/d)

have norm — 1.

(a) n is odd and ta = — 1 with the exception of 0 or more disjoint pairs

{i, j} for which iy = 1.
(b) hj— — 1 for all j9e I, and i,y= 1 for i, j^l except for 0 or more

disjoint pairs {i,j} for which ¿,7 = —1.

(c) « is even, ¿12= —1, <i¿ = l for j>2, and all other ti,= —1 except

for 0 or more disjoint pairs \i,j} for which /,•/ = 1.

Proofs. We let A, B stand for an arbitrary partition of {l, • • •,«},

and use the notations Ta, Tb defined above. In each case we show

that for every A, B either there is iEA with Ts(i) = — 1 or there is

jEB with TA(j) = — 1, so the hypothesis of the corollary is satisfied.

(a) We may suppose A contains an odd number of elements, and

B an even number. lijEB belongs to no exceptional pair, or belongs

to one whose other member is also in B then T¿(j) = —1. On the

other hand,  if   {i, j}   is an exceptional]pair, t'G-<4, jEB,  then

rB(f) = -i.

(b) We may suppose 1EA. The rest of the argument follows word

for word as in the last two sentences of (a).
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(c) If 1 and 2 are separated in the partition then either 7x(l) or

Tb(1) is equal to —1. Otherwise every factor h,- appearing in any

product TA or 7b is +1, so pi is irrelevant and the problem reduces

to case (a).
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