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1. Introduction. The main purpose of this paper is to establish

sufficient conditions for a group of even order to contain a normal

elementary Abelian 2-subgroup of order at most 4 (Theorem 1). As a

consequence it is shown that PSL(2, 5) is the only simple group which

contains an involution x with the following property: the Sylow

2-subgroup of the centralizer C of x in G is a noncyclic group of order

4 which is normal in C (Theorem 3).

Several corollaries are derived from Theorem 1. In particular, a

direct proof is given of the fact that PSL(2, 5) is the only group which

has no normal 2-complement, no normal elementary Abelian 2-sub-

groups of order less than 8 and which contains an involution with an

elementary Abelian centralizer of order 4 (Theorem 2).

If G is a group, xEG and T is a subset of G, CG(x), Gg(x), 7(7),

o(T), o(x), (T), T*, Z(G) and K~iG) denote respectively: the central-

izer of x in G, the conjugate class of x in G, the set of involutions in T,

the number of elements in T, the order of x, the group generated by

T, T— {1}, the center of G and the largest normal subgroup of G of

odd order. If P is a ¿>-group then fii(P) is the subgroup of P generated

by elements of P of order p.

From now on G will be a group of even order, x a fixed involution of

G, K = K(G), C=CG(x), I = I(CG(x)), Cl(x) = Cle(x), and 5 a fixed
Sylow 2-subgroup of G containing x such that So = Sf~\C = Sylow

2-subgroup of C. We are ready to state the results.

Theorem 1. Suppose that there exists y El—Cl(x) such that

(*) CG(u) r\ C\o(y) C CG(y)

for all uEI- Then (Cle(y)) is a proper elementary Abelian normal

2-subgroup of G.
If, in addition, ir\(Cla(y))= {y}, then o((Cle(y)))^4.

Corollary 1. Suppose that the following conditions hold:

(a) I = I(Ca(u))foralluEC\(x)rM;
(b) 7(Co(y))=7(C(î(z)) for all y, zEI—Cl(x). Then one of the

following statements holds.

(i) G has one class of involutions and (I) is an elementary Abelian

normal 2-subgroup of C.

Received by the editors April 19, 1968 and, in revised form, June 17, 1968.

170



on centralizers of involutions 171

(ii) G has at least two classes of involutions and it contains a proper

elementary Abelian normal 2-subgroup.

Corollary 2. Suppose that o(I) = 3. Then one of the following state-

ments holds.

(i) So = S, x is the only involution in S and (x)K is a normal subgroup

ofG.
(ii) So = S, S contains exactly 3 involutions and (x)K is a proper

normal subgroup of G.

(iii) So = S, G has one conjugate class of involutions.

(iv) G has at least 2 classes of involutions and it contains a normal

elementary Abelian subgroup of order at most 4.

Corollary 2 immediately yields

Corollary 3. Suppose that o(I)^3 and G is simple. Then S = S0

and G has only one conjugate class of involutions.

In case that C is elementary Abelian of order 4 we get the following

Theorem 2. Suppose that C={\, x, y, xy} is elementary Abelian

and G has neither a normal 2-complement nor a normal elementary

Abelian 2-subgroup of order less than 8. Then t7=PSL(2, 5).

The following corollary is an easy consequence of Theorem 2, the

results of Suzuki in [6] and the results of Feit and Thompson in [2].

Corollary 4. Let G be a finite noncyclic simple group containing an

element w such that o(Co(w))=4. Then G is isomorphic to one of the

following groups: PSL(2, 5), PSL(2, 7), Aoand A7.

Our final theorem requires the deep results of Gorenstein and

Walter [S] with respect to groups with a dihedral Sylow subgroup of

order 4.

Theorem 3. Suppose that S0= {l, x, y, xy} is elementary Abelian,

So is normal in C and G is simple. Then G=PSL(2, 5).

The proof of Theorem 1 utilizes the following lemma, which is of

independent interest.

Lemma. Let U be a subgroup of the group H and let w be an involution

of H which normalizes U leaving fixed exactly two elements of U, 1 and y.

Let V be a normal, w-invariant noncyclic elementary Abelian subgroup

of U containing y. Then V is a Sylow 2-subgroup of U, o(F)=4,

and U/V is Abelian.
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2. Proof of the Lemma, Theorem 1 and Corollary 1. We begin with

the proof of the Lemma. Obviously y is an involution. First assume

that o(V) =4, V= {1, y, z, yz} ; then zw—yz. Suppose that U/V is not

an Abelian group of odd order. Then w fixes an element of (U/V)*,

say u V. Thus one of the following holds:

mw = uy     and   u = uw  = u

= uz = uy

= uyz = uy.

Hence we must have uw = uy; but then (uz)" — (uy)(yz) =uz a contra-

diction. Thus U/Vis an Abelian group of odd order. If o(F)>4, then

w fixes an element of (V/(y))*, say z(y), and Fo = (z, y) is a normal,

w-invariant, elementary Abelian subgroup of V containing y, o(Vo)

= 4, and by the first part V=V0, a contradiction. The proof of the

Lemma is complete.

To prove Theorem 1, suppose first that Og(v) (tC(?(y) and let

tEClg(y) — Ca(y). By a result of Brauerand Fowler [l, p. 572], there

exists wEI(G) such that wEI(CG(x))r\Ca(t)CI. Hence by (*)

tECo(w)r\Clo(y)CCG(y) a contradiction. It follows that Cl<?(y)

CCaiy) and (C\o(y)) = H is a normal subgroup of G contained in

Co(y)- H Ca(y)=G, then H=(y)9iG and the theorem follows. If

Co(y)réG, then H is a proper normal subgroup of G and obviously

y£ßi(P)<]C7 where P is the Sylow 2-subgroup of Z(H). Hence

Clg(v) C&i(P) and H is elementary Abelian. Finally suppose that

o(H) ïï 8 and Ii\H= \y}. Then x leaves only y and 1 fixed in H and

by the Lemma o(H) = 4, a contradiction. Thus o(H) :S4 and the proof

of Theorem 1 is complete.

It remains to prove Corollary 1. If 7CCl(x), then each element of

/ belongs to the center of some Sylow 2-subgroup of G and therefore

G has one class of involutions. By (a), (7) is an elementary Abelian

normal 2-subgroup of C and (i) holds. Suppose finally that 7(£Cl(x)

and lety£I — Cl(x). It follows from (b) that the elements of I— Cl(x)

commute with each other. Thus for all u £/f^Cl(x),

CQ(u) H ClG(y) = IH Cl0(y) C C0(y),

and for all «£/ — Cl(x),

CG(u) r\ Clo(y) = I(Co(y)) H C\a(y) C CG(y).

It follows then by Theorem 1 that G has a proper normal elementary

Abelian 2-subgroup.
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3. Proof of Theorem 2 and Corollaries 2 and 4. We begin with

Corollary 2. If o(I) = 1, then 50 = 5, x is the only involution in 5 and

by [3], (x)K is a normal subgroup of G, as described in (i). As o(I) ?±2,

let o(7)=3, I— {x, y, xy}. If no element of 7 is conjugate to x in G,

then Ns(So) =S0, S = S0, and by [3] (x)K<G. Since o(I) =3, (x)K^G
and (ii) holds. If all the elements of 7 are conjugate in G, then again

5o = 5 and (iii) holds. Suppose finally that x is conjugate to xy in G,

but not to y. Then I(CG(xy))=I and by Corollary 1, (C\G(y)) is a

normal elementary Abelian 2-subgroup of G. Hence, as either (Cl<j(y))

= (y) or Cl<?(y) contains an element which does not commute with x,

7n(Cl(?(y))={y} and by Theorem 1, o((Cle(y))) g4, so that (iv)
holds. This completes the proof of Corollary 2.

We continue with Theorem 2. If C = S, then by Lemma 15.2.4 of

[4], G has only one class of involutions and Ar = A7'G(0=PSL(2, 3).

Thus C contains the centralizer of each of its nonunit elements and

by Theorem 9.3.2 in [4], due to Suzuki, G is a Zassenhaus group of

degree 5 with N the subgroup fixing a letter. Thus A'' is a Frobenius

group with complement of order e = 3 and kernel of order w = 4. Since

e is odd and e = n — 1, it follows from Theorems 13.3.5 and 13.1.1 in

[4], due to Zassenhaus, that G^PSL(2, 4)^PSL(2, 5). Next assume

that C^S and let yECi^Z(S). As Nsid^C, xy is conjugate to x

in G and CG(xy) = C. Since y is not conjugate to x in G, it follows from

Theorem 1 that (ClG(y)} is a normal elementary Abelian 2-subgroup

of G. As before If^\(C\G(y))= {y}, and it follows by Theorem 1 that

o((Cle(y))) S=4 in contradiction to our assumptions. The proof is

complete.

It remains to prove Corollary 4. If o(CG(w)) =2, then G is not

simple. If oíCgÍw)) =3, then by [2], G is isomorphic either to PSL(2, 5)

or to PSL(2, 7). If o(CG(w))=4 and o(w)=i, then by [ó], G is iso-

morphic to one of the groups PSL(2, 7), A6 and A7. If, finally,

o(CG(w)) =4 and o(w) =2, then by Theorem 2, G^PSL(2, 5).

4. Proof of Theorem 3. If S=S0, then by [5], GSPSL(2, q), q>3.
If q is even, then G^PSL(2, 4)^PSL(2, 5). If q is odd, then the
centralizer C of an involution of G is a dihedral group of order g + e,

e= ±1. For 5 to be normal in C, q-\-e = i and q = 5. Thus again G

^PSL(2, 5). Suppose next that S0^S, {y} =Z(S)r\S0f. Then

Ns(So)^iSo, xy is conjugate to x in G and So is the normal Sylow

2-subgroup of CG(xy). As y is not conjugate to x in G, it follows from

Corollary 1 that G contains a proper, nontrivial, normal subgroup,

in contradiction to the simplicity of G. The proof is complete.
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