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1. Introduction. This paper continues the study of the nature of

finite groups such that each cyclic subgroup of composite order is

normal (CCN-groups) begun in [l], and is devoted to a proof of the

following partial refinement of [l, Theorem 10.5, p. 306].

Theorem 1.1. Let G be a finite group of order divisible by at least

three distinct primes. Then every cyclic subgroup of G of composite order

is normal in G if and only if G is either

(i) isomorphic to A$, the alternating group on five letters, or

(ii) Abelian, or

(iii) Hamiltonian, or

(iv) a split extension of an Abelian group A by a cyclic group \t}

of prime order p such that for all xEA

(a) (txY = 1,        and       (b) txt~l E {x}.

The proof will use results from [l] and the following lemma.

Lemma 1.2. Let G be a finite group such that each cyclic subgroup of G

of composite order is normal in G. Let G contain at least one element of

composite order. Then the subgroup generated by the elements in G of

composite order is of prime or trivial index in G.

It is an immediate consequence of this lemma that the recursiveness

of the characterization of CCN-groups given in Theorem 10.5 of [l]

may be suppressed in all cases. The properties of CCN-groups of

order divisible by at most two primes are still under investigation.

The difficulty with the remaining cases is that, for a CCN-group of

order divisible by at most two primes, it is possible for the subgroup

generated by the elements of composite order to be a ^-group of

nilpotence class two, or for the entire group to consist of elements of

prime order yet not be A5. In the first instance, simple conditions to

restrict even the £-group to the class of CCN-groups are at present

lacking, and the action of the remaining elements on this subgroup,

while easily described, lacks the simplicity of case (iv) of Theorem

1.1, above. (See Theorem 10.5 of [l, p. 306].)

The degenerate case of a finite group without elements of corn-
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posite order has been handled in Theorem 8.1 of [l, p. 299], which is

proven by appeal to powerful theorems from the literature. The

author expects that similar tools will be required to obtain finer de-

tail, since the structure of the Burnside groups of prime exponent

would be needed for a final answer. (See Coxeter and Moser [3, pp.

80-82], for information on Burnside groups.)

Aside from their structure, CCN-groups are of interest because a

version of Hajós' theorem holds for them. For further information on

that topic, see in particular [l, pp. 289-290].

2. Notation. Let G denote the inclusion of an element in a set.

Denote by {xa} the group generated by the items xa enclosed.

For a finite group G, denote by NPiG) the subgroup generated by

elements of composite order.

Call a finite nontrivial group G a CCN-group if every cyclic sub-

group of G of composite order is normal in G.

3. Proof of Lemma 1.2. The proof of Lemma 1.2 makes use of the

techniques of Burnside [2, §248].

If G = NP(G) we are done. Suppose G^NP(G). Give wEG,
w(£NP(G). By the definition of NP(G), w is of prime order p. Ii G is

generated by w and NP(G), NP(G) being characteristic in G, the

proof will be complete. On the other hand, for the remaining case we

will obtain a contradiction.

Suppose there exists vEG, v(£ {w, NP(G)}. v is of some prime order

q. By hypothesis, there exists xENP(G) of composite order. Since G

is a CCN-group, we define automorphisms w* and v* on {x} by

w*(x) = wxw~1,       v*(x) = vxv~x.

As in the proof of Theorem 9.1 of [l, p. 300], it is easy to show w* and

v* to be nontrivial. By Lemma 10.1 of [l, p. 304], wvvr^v'1 commutes

with x, whence w* commutes with »*. If p9^q, then w*v* is of order

pq, which implies wv to be of composite order, i.e. wvENP(G). This

in turn implies vE {w, NP(G)}, contrary to construction. Therefore

p = q and {w*, v*} is of order p or of order p2.

Suppose {w*, v*} to be of order p. Then v*E {w*}, i.e. there is an

integer a such that vw" commutes with x. By the construction of v,

vw" is of prime order. Now either {iW*} has nontrivial intersection

with {x} or vw"x has order a multiple of that of x. In the first case we

would have, by the primeness of the order of vwa, vwaENP(G), and

in the second case vw"xENP(G), both contrary to the construction

of v. Hence {w*, v*} is of order p2.

Let t G {w*, w*}, t t= 1. We know rp = 1. As in the proof of Theorem
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9.8 of [l, p. 303], it is easy to show that

xt(x)t2(x) ■ ■ ■ t^(x) = 1.

Now take

Tl = v*w*, r2 = v*(w*)2, ■ ■ • , rp = v*(w*)p = l)*,

for which we have

xti(x)ti(x) ■ ■ ■ t\   (x) = 1,

xt2(x)t2(x) • • ■ t2   (x) = 1,

xtp(x)tp(x) ■ ■ ■ tP~ (x) = 1,

whence, by multiplying the left-hand sides together,

1 = xp(ti(x)t2(x) • ■ ■ tp(x)) ■ ■ • (ti(x)t2(x) • • ■ Tp(x)) ■ ■ ■

• (tV (x)/2   (x) ■ ■ ■ rPp   (x))

= xpv*(w*(x)(w*)2(x) • ■ ■ (w*)p~1(x)x) ■ • •

■ (v*)'((w*y(x)((v*y)2(x) ■ ■ • ((w*y)p-i(x)x) ■ ■ ■

= xp(h*(1))p-1 = x?.

This contradicts the assumption that x was of composite order, which

completes the proof.

4. Proof of Theorem 1.1. We prove sufficiency first. A6 contains no

subgroups of composite order; thus all such subgroups it contains are

normal. Every subgroup of an Abelian or Hamiltonian group is nor-

mal; a fortiori every cyclic subgroup of composite order is normal. It

remains to consider case (iv). Suppose G to be so defined. Let x£^4.

Define r(x) =txt~l. Then, by (a), t(x)t2(x) • • • tp(x) = 1, whence, by

thecommutativityof A and Lemma 9.5 of [l,p. 301], every element of

G of composite order is an element of A. Again by thecommutativity

of A and by (b), every cyclic subgroup of A, a fortiori every cyclic

subgroup of G of composite order, is normal in G. Thus conditions (i)

through (iv) are sufficient for G to be a CCN-group.

We now prove necessity. Suppose G is a CCN-group of order

divisible by three distinct primes.

Suppose G contains no elements of composite order. By Theorem

8.1 of [l, p. 299], either G is isomorphic to Ai or is of order divisible

by at most two primes, whence, by the hypothesis that G is of order

divisible by at least three primes, G is isomorphic to A&.
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Now suppose G to contain at least one element of composite order.

By Theorem 10.3 of [l, p. 305], NP(G) is either Abelian, Hamilto-
nian, or a p-group of nilpotence class two. By Lemma 1.2 and the

hypothesis on the order of G, NP(G) is not a ¿»-group.

UG = NP(G) we are done. Assume G^NP(G). By Lemma 1.2 and

by Theorem 9.8 of [l, p. 303], G is a split extension of NP(G) by a

cyclic group {/} of prime order p such that, among other conditions,

(txY = \, for all xENP(G). By Lemma 10.2 of [l, p. 304], since
NP(G) is not a p-group, txt~lE {x} for all x£iVP(G). It only remains

to show that NP(G) is Abelian rather than Hamiltonian. But if

NP(G) were Hamiltonian, it would be of even order, which, by Theo-

rem 10.4 of [l, p. 305], implies NP(G) to be of even index in G. This,

in turn, implies, by Theorem 9.2 of [l, p. 300], that NP(G) was

actually Abelian. This completes the proof.
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