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Sturm's Comparison Theorem allows two simple physical inter-

pretations, one of which leads to Sturmian Theorems for elliptic

equations and the other, as we shall see below, to Sturmian Theorems

for hyperbolic equations. Consider first the equations

(la) — u" = pu

(2a) — v" = qv

where mOi)=m(x2)=0 and w(x)>0, q(x)^p(x)>0 for Xi<x<x2.

Equation (la) represents a string of density p(x) tied down at x = Xi

and x = x2 and vibrating with unit frequency in its fundamental mode.

Equation (2a) represents a heavier string, which need only be elasti-

cally bound at x = Xi and x = x2, also vibrating with unit frequency.

The fact that the second string cannot be vibrating in its fundamental

mode is one physical interpretation of Sturm's Theorem. Generalizing

this physical argument to membranes instead of strings, one is led

in a natural way to Sturmian Theorems for elliptic equations. For a

fairly complete bibliography on this subject, see [l], [2].

In order to motivate a generalization to hyperbolic equations, con-

sider a particle of unit mass which is attracted to the origin by a time

dependent force proportional to the distance from the origin. The

motion of such a particle is described by

(lb) Ü + p(t)u = 0.

Given a second particle of unit mass which is attracted to the origin

by a greater force of the same type, its motion is described by

(2b) v = q(t)v = 0,

where q(t)±p(t).
It is physically plausible that between every two successive passes

through the origin by the first particle, the second particle will pass

through the origin at least once. The mathematical proof of this fact

is precisely Sturm's Comparison Theorem: if q(t)^p(t), then the

zeros of v(t) separate the zeros of u(t).

This physical interpretation can be used to motivate a generaliza-

tion of Sturm's Theorem to hyperbolic partial differential equations

as follows. Consider a string of unit density and unit elasticity which
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is attracted to the line u = 0 by a force proportional to the string's

displacement from that line. The motion of such a string is described by

(3) utt — uxx + p(x, t)u = 0.

Given a second string of unit density and elasticity and attracted to

the same line by a greater force of the same type, its motion is de-

scribed by

(4) Vu — vzx + q(x, t)v = 0,

where q(x, t) ^p(x, t). By analogy to the case of particles, one would

expect that the second vibrating string should oscillate faster than the

first and that this fact should be the consequence of a Sturmian

Theorem for hyperbolic equations.

We shall consider (3) and (4) for Xi^x^x2 and t^to and assume

that p and q are continuous in this strip. Our first observation is that

a comparison theorem for (3) and (4) will require some auxiliary

conditions relating the initial conditions satisfied by solutions of (3)

and (4).

Lemma. Suppose q does not depend on x. Given any M>0 we can

choose f(x) so that the solution v of the problem

vtt — vxx + q(t)v = 0,

v(x, t0) = 0,        vt(x, t0) = f(x)

has no zero for t0<t<M.

Proof. If g does not depend on x, we can solve (4) by separation of

variables  Writing v(x, t)=X(x)T(t), (4) yields

X" = XX,        T" + qT = XT

and the initial conditions of (5) imply that

T(t0)=0,       X(x)T'(to) =/(*).

Given M, we choose a positive constant ïo^suploSlSM q(t), and let

f(x) be a positive solution of X" = q0X. Then the solution of (5) is

v(x,t) =/(x)r1(/),

where Ti(t) is the solution of

T" + qT = qoT,        T(t0) = 0,        T'(t0) = 1.

Since qo^q(t), T\(t) is positive for t0<t^M^and v(x, t) has no zero for

t0<t^M.
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Thus we cannot expect a generalization of Sturm's Separation

Theorem unless some constraints are imposed relating the boundary

conditions satisfied by u[x, t) and v(x, t). One means of imposing

appropriate constraints is to consider strings which are elastically

bound at x = Xi and x = x2—i.e., to prove a comparison theorem for

solutions of hyperbolic initial-boundary value problems. Our principal

result states that if q(x) z^p(x) and if the second string is more tightly

bound at xi and x2, then the second string will oscillate more rapidly,

in a sense to be made precise below.

Theorem 1. Let u{x) be a solution of

uu *- uXx + pu = 0,       u(x, t0) = 0

which is positive for t0<t<T and satisfies

u(x, T) = 0;       xi ^ x = x2,

ux(xi, i) — o-^OwOi, /) = 0,

ux(x2, t) + cr2(t)u(x2, t) = 0.

q(x, t) ^ p{x, t)

r,(0 2; o-i(t);        toút^T;    i = 1, 2,

then every solution of

vu — vxx + qv = 0,

(7) »,(*!, /) - Ti(t)v(xh I) = 0,

vx(x2, t) + t2(1)v(x2, /)=0

has a zero in

D = {O, t) | xi g x á x2; fo á l á T}.

Proof. Suppose to the contrary that v(x, t)>0 in D. Multiplying

through (3) and (4) by v and u respectively, and subtracting, we get

(vut — uvt)t — (vux — uvx)x = (q — p)uv.

Integrating this relation over D and applying Green's Theorem yields

/(vut — uvt)dx + (vux — uvx)dt = — I  I   (q — p)uvdxdt.
dD J J D

As a result of the boundary conditions satisfied by u and v, the

boundary integral becomes

If

(6)
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(12.<0) /» (12,T)

vuidx +  I
(xi.fo) •'   (I2.Í0)

^ - (*„T) /» (*i,D

/i (X2,<0) /»  (12,Ï-)uMidx +1 (t2 — c2)uvdt
íxi.fnl •/   toi.fn)

/(x2,r) <, l*i,rj
ti«(áx —  I (o-! — Ti)uvdt.

ix, T) J (»,.(«)(xi,T) ^  (Xl.ig)

From (8) it follows that our hypotheses assure that the boundary

integral is positive, contradicting the condition

-//.
{q — p)uvdxdt = 0.

Remarks. 1. If equality is ruled out in (6), then it is easy to show

that v has a zero in the interior of D.

2. If v(x, t) satisfies v(xi, t)=v(x2, t)=0 (corresponding to ti=t2

= + » ) then no boundary conditions need to be considered for m(x, t).

Consider now the case where (3) allows a separation of variables

and the time dependent component is oscillatory at / = + oo. Apply-

ing Theorem 1, one can derive oscillation criteria for a class of hyper-

bolic equations. This idea is the basis of the following theorem which

is similar to the results of [3] for the elliptic case.

Theorem 2. Let u(x, t) satisfy

Utt — Uxx + pu = 0,

(9) «.(«i, 0 - <Tiu(xi, t) = 0,

«x(x2, t) + o-2m(x2, 0 = 0,

where p is a function of t only and <ru a2 are constants. Let Xi be the first

eigenvalue of

(10) -d*y/dx* = \y,    y'(Xl) - ffly(x1) = 0,    /(x2) + <r2y(x2) = 0,

and suppose that T"-\-(p-T-'Ki) T is oscillatory att=<x>.Ifv(x, t) satisfies

(8) with

q(x,t)^p(t);        T,(0fc»i,    i =1,2,

then v(x, t) has a zero in

FM - {(s,0|*i â x á x2;¿> M\

for every M>0.

Proof. Setting u(x, t)=X(x)T(t), we can solve (9) by separation

of variables to get
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X" = XX,       T" + pT = xr.

Choosing X to be the eigenfunction of (10) corresponding to Xi,

one gets

T" + (p + \i)T = 0

which is oscillatory by hypothesis. Letting {/>•} denote the zeros of

V + O + Xi)T « 0,        7/(/o)=0

one obtains a sequence of closed domains

Dk = {O, i) | xi g x g x2; 4 = í = í*+i{

in each of which one can apply Theorem 1 to conclude that »0, t)

has a zero in Dk.

Remarks. 1. If p is a function of x only, the technique of Theorem 2

also applies.

2. The above results can be extended readily to any pair of self-

adjoint ultra-hyperbolic equations with a common principal part.
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